Unbiased Inference for Discretely Observed Hidden Markov Model Diffusions
Chada, N. K., Franks, J., Jasra, A., Law, K. J., & Vihola, M. (2021). Unbiased Inference for Discretely Observed Hidden Markov Model Diffusions. SIAM/ASA Journal on Uncertainty Quantification, 9(2), 763-787. https://doi.org/10.1137/20M131549X
Julkaistu sarjassa
SIAM/ASA Journal on Uncertainty QuantificationPäivämäärä
2021Tekijänoikeudet
© 2021, Society for Industrial and Applied Mathematics
We develop a Bayesian inference method for diffusions observed discretely and with noise, which is free of discretization bias. Unlike existing unbiased inference methods, our method does not rely on exact simulation techniques. Instead, our method uses standard time-discretized approximations of diffusions, such as the Euler--Maruyama scheme. Our approach is based on particle marginal Metropolis--Hastings, a particle filter, randomized multilevel Monte Carlo, and an importance sampling type correction of approximate Markov chain Monte Carlo. The resulting estimator leads to inference without a bias from the time-discretization as the number of Markov chain iterations increases. We give convergence results and recommend allocations for algorithm inputs. Our method admits a straightforward parallelization and can be computationally efficient. The user-friendly approach is illustrated on three examples, where the underlying diffusion is an Ornstein--Uhlenbeck process, a geometric Brownian motion, and a $2d$ nonreversible Langevin equation.
...
Julkaisija
Society for Industrial & Applied Mathematics (SIAM)ISSN Hae Julkaisufoorumista
2166-2525Asiasanat
Julkaisu tutkimustietojärjestelmässä
https://converis.jyu.fi/converis/portal/detail/Publication/98936174
Metadata
Näytä kaikki kuvailutiedotKokoelmat
Rahoittaja(t)
Suomen AkatemiaRahoitusohjelmat(t)
Akatemiatutkijan tutkimuskulut, SA; Akatemiahanke, SA; Akatemiatutkija, SALisätietoja rahoituksesta
JF, AJ, KL and MV have received support from the Academy of Finland (grants 274740, 312605 and 315619) and from the Institute for Mathematical Sciences, Singapore (2018 programme ‘Bayesian Computation for High-Dimensional Statistical Models’). NC and AJ have received support from KAUST baseline funding, JF and KL from The Alan Turing Institute, AJ from the Singapore Ministry of Education (R-155-000-161-112), and KL from the University of Manchester (School of Mathematics). ...Lisenssi
Samankaltainen aineisto
Näytetään aineistoja, joilla on samankaltainen nimeke tai asiasanat.
-
Conditional particle filters with diffuse initial distributions
Karppinen, Santeri; Vihola, Matti (Springer, 2021)Conditional particle filters (CPFs) are powerful smoothing algorithms for general nonlinear/non-Gaussian hidden Markov models. However, CPFs can be inefficient or difficult to apply with diffuse initial distributions, which ... -
bssm: Bayesian Inference of Non-linear and Non-Gaussian State Space Models in R
Helske, Jouni; Vihola, Matti (R Foundation for Statistical Computing, 2021)We present an R package bssm for Bayesian non-linear/non-Gaussian state space modelling. Unlike the existing packages, bssm allows for easy-to-use approximate inference based on Gaussian approximations such as the Laplace ... -
Importance sampling type estimators based on approximate marginal Markov chain Monte Carlo
Vihola, Matti; Helske, Jouni; Franks, Jordan (Wiley-Blackwell, 2020)We consider importance sampling (IS) type weighted estimators based on Markov chain Monte Carlo (MCMC) targeting an approximate marginal of the target distribution. In the context of Bayesian latent variable models, the ... -
Efficient Bayesian generalized linear models with time-varying coefficients : The walker package in R
Helske, Jouni (Elsevier BV, 2022)The R package walker extends standard Bayesian general linear models to the case where the effects of the explanatory variables can vary in time. This allows, for example, to model the effects of interventions such as ... -
Hierarchical log Gaussian Cox process for regeneration in uneven-aged forests
Kuronen, Mikko; Särkkä, Aila; Vihola, Matti; Myllymäki, Mari (Springer Science and Business Media LLC, 2022)We propose a hierarchical log Gaussian Cox process (LGCP) for point patterns, where a set of points xx affects another set of points yy but not vice versa. We use the model to investigate the effect of large trees on the ...
Ellei toisin mainittu, julkisesti saatavilla olevia JYX-metatietoja (poislukien tiivistelmät) saa vapaasti uudelleenkäyttää CC0-lisenssillä.