A time-of-flight correction procedure for fast-timing data of recoils with varying implantation positions at a spectrometer focal plane
Mallaburn, M.J., Singh, B. N., Cullen, D. M., Hodge, D., Taylor, M.J., Giles, M.M., Barber, L., Niţă, C.R., Mihai, R.E., Mihai, C., Mărginean, R., Mărginean, N., Nobs, C.R., Gamba, E.R., Bruce, A.M., Scholey, C., Rahkila, P., Greenlees, P., Badran, H., . . . Smolen, M. (2019). A time-of-flight correction procedure for fast-timing data of recoils with varying implantation positions at a spectrometer focal plane. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 933, 18-29. https://doi.org/10.1016/j.nima.2019.04.019
Authors
Date
2019Copyright
© 2019 The Authors
Fast-timing measurements at the focal plane of a separator can suffer from poor timing resolution. This is due to
the variations in time-of-flight (ToF) for photons travelling to a given detector, which arise from the changes in the
implantation positions of the recoil nuclei emitting the γ rays of interest. In order to minimise these effects on timing
measurements, a procedure is presented that improves fast-timing data by performing ToF corrections on an event-by-event
basis. This method was used to correct data collected with an array of eight LaBr3 detectors, which detected γ rays
from spatially distributed 138Gd recoil-implants at the focal plane of the Recoil-Ion-Transport-Unit (RITU) spectrometer.
The Generalised Centroid Difference (GCD) method was used to extract a lifetime from data in conjunction with a new
procedure to calibrate the time walk. The lifetime of the first 2+ state in 138Gd, populated by the decay of the Kπ = 8−
isomeric state, was measured to be 229(24) ps using the ToF-corrected data, which is consistent within three standard
deviations to the literature value. The results together with Monte-Carlo simulations show that the ToF correction
procedure reduced the uncertainty in the measured lifetimes by 3 % in the case of the spatially distributed nuclei at the
focal plane of RITU. However, ∼12 % has been estimated for a similar experiment when using a larger focal plane i.e. the
Super-FRS at the FAIR facility.
...
Publisher
Elsevier; North-HollandISSN Search the Publication Forum
0168-9002Keywords
Publication in research information system
https://converis.jyu.fi/converis/portal/detail/Publication/29722261
Metadata
Show full item recordCollections
License
Related items
Showing items with similar title or keywords.
-
Improvement of time-of-flight spectrometer for elastic recoil detection analysis
Laitinen Mikko (University of Jyväskylä, 2013) -
High-resolution, accurate multiple-reflection time-of-flight mass spectrometry for short-lived, exotic nuclei of a few events in their ground and low-lying isomeric states
Andrés, Samuel Ayet San; Hornung, Christine; Ebert, Jens; Plaß, Wolfgang R.; Dickel, Timo; Geissel, Hans; Scheidenberger, Christoph; Bergmann, Julian; Greiner, Florian; Haettner, Emma; Jesch, Christian; Lippert, Wayne; Mardor, Israel; Miskun, Ivan; Patyk, Zygmunt; Pietri, Stephane; Pihktelev, Alexander; Purushothaman, Sivaji; Reiter, Moritz P.; Rink, Ann-Kathrin; Weick, Helmut; Yavor, Mikhail I.; Bagchi, Soumya; Charviakova, Volha; Constantin, Paul; Diwisch, Marcel; Finlay, Andrew; Kaur, Satbir; Knöbel, Ronja; Lang, Johannes; Mei, Bo; Moore, Iain; Otto, Jan-Hendrik; Pohjalainen, Ilkka; Prochazka, Andrej; Rappold, Christophe; Takechi, Maya; Tanaka, Yoshiki K.; Winfield, John S.; Xu, Xiaodong (American Physical Society, 2019)Mass measurements of fission and projectile fragments, produced via 238 U and 124 Xe primary beams, have been performed with the multiple-reflection time-of-flight mass spectrometer (MR-TOF-MS) of the Fragment ... -
The JUROGAM 3 spectrometer
Pakarinen, J.; Ojala, J.; Ruotsalainen, P.; Tann, H.; Badran, H.; Calverley, T.; Hilton, J.; Grahn, T.; Greenlees, P. T.; Hytönen, M.; Illana, A.; Kauppinen, A.; Luoma, M.; Papadakis, P.; Partanen, J.; Porras, K.; Puskala, M.; Rahkila, P.; Ranttila, K.; Sarén, J.; Sandzelius, M.; Szwec, S.; Tuunanen, J.; Uusitalo, J.; Zimba, G. (Springer, 2020)The JUROGAM 3 spectrometer has been constructed for in-beam γ-ray spectroscopy experiments in the Accelerator Laboratory of the University of Jyväskylä, Finland. JUROGAM 3 consists of germanium-detector modules in a compact ... -
An innovative Superconducting Recoil Separator for HIE-ISOLDE
Martel, I.; Acosta, L.; Aguado, J. L.; Assie, M.; Al-Aqeel, M. A. M.; Ballarino, A.; Barna, D.; Berjillos, R.; Bonora, M.; Bontoiu, C.; Borge, M. J. G.; Briz, J. A.; Bustinduy, I.; Bottura, L.; Catalina-Medina, L.; Catford, W.; Cederkäll, J.; Davinson, T.; de Angelis, G.; Devred, A.; Díaz-Martín, C.; Ekelöf, T.; Felice, H.; Fynbo, H.; Foussat, A. P.; Florin, R.; Freeman, S. J.; Gaffney, L.; García-Ramos, C.; Gentini, L.; Gonzalez-Cordero, C. A.; Guazzoni, C.; Haziot, A.; Heinz, A.; Jimenez, J. M.; Johnston, K.; Jonson, B.; Kirby, G.; Kirby, O.; Kurtukian-Nieto, T.; Labiche, M.; Liebsch, M.; Losasso, M.; Laird, A.; Muñoz, J. L.; Nara Singh, B. S.; Neyens, G.; Napiorkowski, P. J.; O'Donnell, D.; Page, R. D.; Perini, D.; Resta-López, J.; Riddone, G.; Rodriguez, J. A.; Rodin, V.; Russenschuck, S.; Sharma, V. R.; Salguero-Andújar, F.; Sánchez-Segovia, J.; Riisager, K.; Sánchez-Benítez, A. M.; Shepherd, B.; Siesling, E.; Smallcombe, J.; Stanoiu, M.; Tengblad, O.; Thermeau, J. P.; Tommasini, D.; Uusitalo, J.; Varnasseri, S.; Welsch, C. P.; Willering, G. (Elsevier BV, 2023)The ISOLDE Scientific Infrastructure at CERN offers a unique range of post-accelerated radioactive beams. The scientific program can be improved with the “Isolde Superconducting Recoil Separator” (ISRS), an innovative ... -
Phase-Imaging Ion-Cyclotron-Resonance technique at the JYFLTRAP double Penning trap mass spectrometer
Nesterenko, Dmitrii; Eronen, Tommi; Kankainen, Anu; Canete, Laetitia; Jokinen, Ari; Moore, Iain; Penttilä, Heikki; Rinta-Antila, Sami; de Roubin, Antoine; Vilén, Markus (Springer, 2018)The Phase-Imaging Ion-Cyclotron-Resonance (PI-ICR) technique has been commissioned at the JYFLTRAP double Penning trap mass spectrometer. This technique is based on projecting the ion motion in the Penning trap onto a ...