dc.contributor.author | Wang, Deqing | |
dc.contributor.author | Cong, Fengyu | |
dc.contributor.author | Ristaniemi, Tapani | |
dc.date.accessioned | 2019-04-25T07:16:26Z | |
dc.date.available | 2019-04-25T07:16:26Z | |
dc.date.issued | 2019 | |
dc.identifier.citation | Wang, D., Cong, F., & Ristaniemi, T. (2019). Higher-order Nonnegative CANDECOMP/PARAFAC Tensor Decomposition Using Proximal Algorithm. In <i>ICASSP 2019 : Proceedings of the 2019 IEEE International Conference on Acoustics, Speech and Signal Processing</i> (pp. 3457-3461). IEEE. Proceedings of the IEEE International Conference on Acoustics, Speech, and Signal Processing. <a href="https://doi.org/10.1109/ICASSP.2019.8683217" target="_blank">https://doi.org/10.1109/ICASSP.2019.8683217</a> | |
dc.identifier.other | CONVID_30537527 | |
dc.identifier.uri | https://jyx.jyu.fi/handle/123456789/63614 | |
dc.description.abstract | Tensor decomposition is a powerful tool for analyzing multiway data. Nowadays, with the fast development of multisensor technology, more and more data appear in higherorder (order > 4) and nonnegative form. However, the decomposition of higher-order nonnegative tensor suffers from
poor convergence and low speed. In this study, we propose a
new nonnegative CANDECOM/PARAFAC (NCP) model using proximal algorithm. The block principal pivoting method
in alternating nonnegative least squares (ANLS) framework
is employed to minimize the objective function. Our method
can guarantee the convergence and accelerate the computation. The results of experiments on both synthetic and real
data demonstrate the efficiency and superiority of our method. | fi |
dc.format.mimetype | application/pdf | |
dc.language.iso | eng | |
dc.publisher | IEEE | |
dc.relation.ispartof | ICASSP 2019 : Proceedings of the 2019 IEEE International Conference on Acoustics, Speech and Signal Processing | |
dc.relation.ispartofseries | Proceedings of the IEEE International Conference on Acoustics, Speech, and Signal Processing | |
dc.rights | In Copyright | |
dc.subject.other | tensor decomposition | |
dc.subject.other | nonnegative CAN-DECOMP/PARAFAC | |
dc.subject.other | proximal algorithm | |
dc.subject.other | block principal pivoting | |
dc.subject.other | alternating nonnegative least squares | |
dc.title | Higher-order Nonnegative CANDECOMP/PARAFAC Tensor Decomposition Using Proximal Algorithm | |
dc.type | conference paper | |
dc.identifier.urn | URN:NBN:fi:jyu-201904232246 | |
dc.contributor.laitos | Informaatioteknologian tiedekunta | fi |
dc.contributor.laitos | Faculty of Information Technology | en |
dc.contributor.oppiaine | Tietotekniikka | fi |
dc.contributor.oppiaine | Mathematical Information Technology | en |
dc.type.uri | http://purl.org/eprint/type/ConferencePaper | |
dc.date.updated | 2019-04-23T15:15:06Z | |
dc.relation.isbn | 978-1-4799-8131-1 | |
dc.type.coar | http://purl.org/coar/resource_type/c_5794 | |
dc.description.reviewstatus | peerReviewed | |
dc.format.pagerange | 3457-3461 | |
dc.relation.issn | 1520-6149 | |
dc.type.version | acceptedVersion | |
dc.rights.copyright | © 2019 IEEE. | |
dc.rights.accesslevel | openAccess | fi |
dc.type.publication | conferenceObject | |
dc.relation.conference | IEEE International Conference on Acoustics, Speech and Signal Processing | |
dc.subject.yso | signaalinkäsittely | |
dc.format.content | fulltext | |
jyx.subject.uri | http://www.yso.fi/onto/yso/p12266 | |
dc.rights.url | http://rightsstatements.org/page/InC/1.0/?language=en | |
dc.relation.doi | 10.1109/ICASSP.2019.8683217 | |
dc.type.okm | A4 | |