Show simple item record

dc.contributor.authorWang, Deqing
dc.contributor.authorCong, Fengyu
dc.contributor.authorRistaniemi, Tapani
dc.date.accessioned2019-04-25T07:16:26Z
dc.date.available2019-04-25T07:16:26Z
dc.date.issued2019
dc.identifier.citationWang, D., Cong, F., & Ristaniemi, T. (2019). Higher-order Nonnegative CANDECOMP/PARAFAC Tensor Decomposition Using Proximal Algorithm. In <i>ICASSP 2019 : Proceedings of the 2019 IEEE International Conference on Acoustics, Speech and Signal Processing</i> (pp. 3457-3461). IEEE. Proceedings of the IEEE International Conference on Acoustics, Speech, and Signal Processing. <a href="https://doi.org/10.1109/ICASSP.2019.8683217" target="_blank">https://doi.org/10.1109/ICASSP.2019.8683217</a>
dc.identifier.otherCONVID_30537527
dc.identifier.urihttps://jyx.jyu.fi/handle/123456789/63614
dc.description.abstractTensor decomposition is a powerful tool for analyzing multiway data. Nowadays, with the fast development of multisensor technology, more and more data appear in higherorder (order > 4) and nonnegative form. However, the decomposition of higher-order nonnegative tensor suffers from poor convergence and low speed. In this study, we propose a new nonnegative CANDECOM/PARAFAC (NCP) model using proximal algorithm. The block principal pivoting method in alternating nonnegative least squares (ANLS) framework is employed to minimize the objective function. Our method can guarantee the convergence and accelerate the computation. The results of experiments on both synthetic and real data demonstrate the efficiency and superiority of our method.fi
dc.format.mimetypeapplication/pdf
dc.language.isoeng
dc.publisherIEEE
dc.relation.ispartofICASSP 2019 : Proceedings of the 2019 IEEE International Conference on Acoustics, Speech and Signal Processing
dc.relation.ispartofseriesProceedings of the IEEE International Conference on Acoustics, Speech, and Signal Processing
dc.rightsIn Copyright
dc.subject.othertensor decomposition
dc.subject.othernonnegative CAN-DECOMP/PARAFAC
dc.subject.otherproximal algorithm
dc.subject.otherblock principal pivoting
dc.subject.otheralternating nonnegative least squares
dc.titleHigher-order Nonnegative CANDECOMP/PARAFAC Tensor Decomposition Using Proximal Algorithm
dc.typeconference paper
dc.identifier.urnURN:NBN:fi:jyu-201904232246
dc.contributor.laitosInformaatioteknologian tiedekuntafi
dc.contributor.laitosFaculty of Information Technologyen
dc.contributor.oppiaineTietotekniikkafi
dc.contributor.oppiaineMathematical Information Technologyen
dc.type.urihttp://purl.org/eprint/type/ConferencePaper
dc.date.updated2019-04-23T15:15:06Z
dc.relation.isbn978-1-4799-8131-1
dc.type.coarhttp://purl.org/coar/resource_type/c_5794
dc.description.reviewstatuspeerReviewed
dc.format.pagerange3457-3461
dc.relation.issn1520-6149
dc.type.versionacceptedVersion
dc.rights.copyright© 2019 IEEE.
dc.rights.accesslevelopenAccessfi
dc.type.publicationconferenceObject
dc.relation.conferenceIEEE International Conference on Acoustics, Speech and Signal Processing
dc.subject.ysosignaalinkäsittely
dc.format.contentfulltext
jyx.subject.urihttp://www.yso.fi/onto/yso/p12266
dc.rights.urlhttp://rightsstatements.org/page/InC/1.0/?language=en
dc.relation.doi10.1109/ICASSP.2019.8683217
dc.type.okmA4


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record

In Copyright
Except where otherwise noted, this item's license is described as In Copyright