Show simple item record

dc.contributor.authorLammi, Päivi
dc.date.accessioned2019-03-18T06:58:18Z
dc.date.available2019-03-18T06:58:18Z
dc.date.issued2011
dc.identifier.citationLammi, P. (2011). Quasihyperbolic boundary condition: Compactness of the inner boundary. <i>Illinois Journal of Mathematics</i>, <i>55</i>(3), 1221-1233. <a href="https://doi.org/10.1215/ijm/1371474552" target="_blank">https://doi.org/10.1215/ijm/1371474552</a>
dc.identifier.otherCONVID_22473485
dc.identifier.urihttps://jyx.jyu.fi/handle/123456789/63157
dc.description.abstractWe prove that if a metric space satisfies a suitable growth condition in the quasihyperbolic metric and the Gehring–Hayman theorem in the original metric, then the inner boundary of the space is homeomorphic to the Gromov boundary. Thus, the inner boundary is compact.fi
dc.format.mimetypeapplication/pdf
dc.language.isoeng
dc.publisherUniversity of Illinois
dc.relation.ispartofseriesIllinois Journal of Mathematics
dc.relation.urihttp://projecteuclid.org/euclid.ijm/1371474552
dc.rightsIn Copyright
dc.subject.otherGromov-hyperbolisuus
dc.subject.otherGromov-reuna
dc.subject.otherkasvuehto
dc.subject.otherkvasihyperbolinen metriikka
dc.subject.otherGromov boundary
dc.subject.otherGromov hyperbolicity
dc.subject.othergrowth condition
dc.subject.otherquasihyperbolic metric
dc.titleQuasihyperbolic boundary condition: Compactness of the inner boundary
dc.typeresearch article
dc.identifier.urnURN:NBN:fi:jyu-201903071773
dc.contributor.laitosMatematiikan ja tilastotieteen laitosfi
dc.contributor.laitosDepartment of Mathematics and Statisticsen
dc.contributor.oppiaineMatematiikkafi
dc.contributor.oppiaineMathematicsen
dc.type.urihttp://purl.org/eprint/type/JournalArticle
dc.date.updated2019-03-07T10:15:30Z
dc.type.coarhttp://purl.org/coar/resource_type/c_2df8fbb1
dc.description.reviewstatuspeerReviewed
dc.format.pagerange1221-1233
dc.relation.issn0019-2082
dc.relation.numberinseries3
dc.relation.volume55
dc.type.versionpublishedVersion
dc.rights.copyright© 2013 University of Illinois
dc.rights.accesslevelopenAccessfi
dc.type.publicationarticle
dc.format.contentfulltext
dc.rights.urlhttp://rightsstatements.org/page/InC/1.0/?language=en
dc.relation.doi10.1215/ijm/1371474552
dc.type.okmA1


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record

In Copyright
Except where otherwise noted, this item's license is described as In Copyright