Interactive Nonconvex Pareto Navigator for Multiobjective Optimization
Hartikainen, M., Miettinen, K., & Klamroth, K. (2019). Interactive Nonconvex Pareto Navigator for Multiobjective Optimization. European Journal of Operational Research, 275(1), 238-251. https://doi.org/10.1016/j.ejor.2018.11.038
Julkaistu sarjassa
European Journal of Operational ResearchPäivämäärä
2019Oppiaine
TietotekniikkaLaskennallinen tiedeMultiobjective Optimization GroupMathematical Information TechnologyComputational ScienceMultiobjective Optimization GroupTekijänoikeudet
© 2018 Elsevier B.V
We introduce a new interactive multiobjective optimization method operating in the objective space called Nonconvex Pareto Navigator. It extends the Pareto Navigator method for nonconvex problems. An approximation of the Pareto optimal front in the objective space is first generated with the PAINT method using a relatively small set of Pareto optimal outcomes that is assumed to be given or computed prior to the interaction with the decision maker. The decision maker can then navigate on the approximation and direct the search for interesting regions in the objective space. In this way, the decision maker can conveniently learn about the interdependencies between the conflicting objectives and possibly adjust one’s preferences. To facilitate the navigation, we introduce special cones that enable extrapolation beyond the given Pareto optimal outcomes. Besides handling nonconvexity, the new method contains new options for directing the navigation that have been inspired by the classification-based interactive NIMBUS method. The Nonconvex Pareto Navigatormethod is especially well-suited for computationally expensive problems, because the navigation on the approximation is computationally inexpensive. We demonstrate the method with an example. Besides proposing the new method, we characterize interactive navigation based methods in general and discuss desirable properties of navigation methods overall and in particular with respect to Nonconvex Pareto Navigator.
...
Julkaisija
Elsevier BVISSN Hae Julkaisufoorumista
0377-2217Asiasanat
Julkaisu tutkimustietojärjestelmässä
https://converis.jyu.fi/converis/portal/detail/Publication/28751317
Metadata
Näytä kaikki kuvailutiedotKokoelmat
Lisenssi
Samankaltainen aineisto
Näytetään aineistoja, joilla on samankaltainen nimeke tai asiasanat.
-
Treed Gaussian Process Regression for Solving Offline Data-Driven Continuous Multiobjective Optimization Problems
Mazumdar, Atanu; López-Ibáñez, Manuel; Chugh, Tinkle; Hakanen, Jussi; Miettinen, Kaisa (MIT Press, 2023)For offline data-driven multiobjective optimization problems (MOPs), no new data is available during the optimization process. Approximation models (or surrogates) are first built using the provided offline data and an ... -
A survey on handling computationally expensive multiobjective optimization problems with evolutionary algorithms
Chugh, Tinkle; Sindhya, Karthik; Hakanen, Jussi; Miettinen, Kaisa (Springer, 2019)Evolutionary algorithms are widely used for solving multiobjective optimization problems but are often criticized because of a large number of function evaluations needed. Approximations, especially function approximations, ... -
Interactive Multiobjective Robust Optimization with NIMBUS
Zhou-Kangas, Yue; Miettinen, Kaisa; Sindhya, Karthik (Springer, 2018)In this paper, we introduce the MuRO-NIMBUS method for solving multiobjective optimization problems with uncertain parameters. The concept of set-based minmax robust Pareto optimality is utilized to tackle the uncertainty ... -
DESDEO: The Modular and Open Source Framework for Interactive Multiobjective Optimization
Misitano, Giovanni; Saini, Bhupinder Singh; Afsar, Bekir; Shavazipour, Babooshka; Miettinen Kaisa (Institute of Electrical and Electronics Engineers (IEEE), 2021)Interactive multiobjective optimization methods incorporate preferences from a human decision maker in the optimization process iteratively. This allows the decision maker to focus on a subset of solutions, learn about the ... -
Potential of interactive multiobjective optimization in supporting the design of a groundwater biodenitrification process
Saccani, Giulia; Hakanen, Jussi; Sindhya, Karthi; Ojalehto, Vesa; Hartikainen, Markus; Antonelli, Manuela; Miettinen, Kaisa (Elsevier, 2020)The design of water treatment plants requires simultaneous analysis of technical, economic and environmental aspects, identified by multiple conflicting objectives. We demonstrated the advantages of an interactive ...
Ellei toisin mainittu, julkisesti saatavilla olevia JYX-metatietoja (poislukien tiivistelmät) saa vapaasti uudelleenkäyttää CC0-lisenssillä.