Spherically Symmetric Terrestrial Planets with Discontinuities Are Spectrally Rigid
Ilmavirta, J., de Hoop, M. V., & Katsnelson, V. (2024). Spherically Symmetric Terrestrial Planets with Discontinuities Are Spectrally Rigid. Communications in Mathematical Physics, 405(2), Article 31. https://doi.org/10.1007/s00220-023-04892-6
Julkaistu sarjassa
Communications in Mathematical PhysicsPäivämäärä
2024Pääsyrajoitukset
Embargo päättyy: 2025-02-02Pyydä artikkeli tutkijalta
Tekijänoikeudet
© 2024 Springer
We establish spectral rigidity for spherically symmetric manifolds with boundary and interior interfaces determined by discontinuities in the metric under certain conditions. Rather than a single metric, we allow two distinct metrics in between the interfaces enabling the consideration of two wave types, like P- and S-polarized waves in isotropic elastic solids. Terrestrial planets in our solar system are approximately spherically symmetric and support toroidal and spheroidal modes. Discontinuities typically correspond with phase transitions in their interiors. Our rigidity result applies to such planets as we ensure that our conditions are satisfied in generally accepted models in the presence of a fluid outer core. The proof is based on a novel trace formula. We also prove that the length spectrum of the Euclidean ball is simple.
Julkaisija
SpringerISSN Hae Julkaisufoorumista
0010-3616Asiasanat
Julkaisu tutkimustietojärjestelmässä
https://converis.jyu.fi/converis/portal/detail/Publication/206934370
Metadata
Näytä kaikki kuvailutiedotKokoelmat
Lisätietoja rahoituksesta
MVdH was supported by the Simons Foundation under the MATH + X program, the National Science Foundation under grant DMS-1815143, and the corporate members of the Geo-Mathematical Imaging Group at Rice University. JI was supported by the Academy of Finland (projects 332890 and 336254).Lisenssi
Samankaltainen aineisto
Näytetään aineistoja, joilla on samankaltainen nimeke tai asiasanat.
-
The Geodesic Ray Transform on Spherically Symmetric Reversible Finsler Manifolds
Ilmavirta, Joonas; Mönkkönen, Keijo (Springer Science and Business Media LLC, 2023)We show that the geodesic ray transform is injective on scalar functions on spherically symmetric reversible Finsler manifolds where the Finsler norm satisfies a Herglotz condition. We use angular Fourier series to reduce ... -
Limiting Carleman weights and conformally transversally anisotropic manifolds
Angulo, Pablo; Faraco, Daniel; Guijarro, Luis; Salo, Mikko (American Mathematical Society, 2020)We analyze the structure of the set of limiting Carleman weights in all conformally flat manifolds, $ 3$-manifolds, and $ 4$-manifolds. In particular we give a new proof of the classification of Euclidean limiting Carleman ... -
Determining a Random Schrödinger Operator : Both Potential and Source are Random
Li, Jingzhi; Liu, Hongyu; Ma, Shiqi (Springer, 2021)We study an inverse scattering problem associated with a Schrödinger system where both the potential and source terms are random and unknown. The well-posedness of the forward scattering problem is first established in a ... -
Pestov identities and X-ray tomography on manifolds of low regularity
Ilmavirta, Joonas; Kykkänen, Antti (American Institute of Mathematical Sciences (AIMS), 2023)We prove that the geodesic X-ray transform is injective on scalar functions and (solenoidally) on one-forms on simple Riemannian manifolds (M, g) with g ∈ C1,1. In addition to a proof, we produce a redefinition of simplicity ... -
Pestov identities and X-ray tomography on manifolds of low regularity
Ilmavirta, Joonas; Kykkänen, Antti (American Institute of Mathematical Sciences (AIMS), 2023)We prove that the geodesic X-ray transform is injective on scalar functions and (solenoidally) on one-forms on simple Riemannian manifolds (M, g) with g ∈ C1,1. In addition to a proof, we produce a redefinition of simplicity ...
Ellei toisin mainittu, julkisesti saatavilla olevia JYX-metatietoja (poislukien tiivistelmät) saa vapaasti uudelleenkäyttää CC0-lisenssillä.