dc.contributor.author | Geiss, Christel | |
dc.contributor.author | Steinicke, Alexander | |
dc.date.accessioned | 2019-01-09T12:28:50Z | |
dc.date.available | 2019-01-09T12:28:50Z | |
dc.date.issued | 2018 | |
dc.identifier.citation | Geiss, C., & Steinicke, A. (2018). Existence, uniqueness and comparison results for BSDEs with Lévy jumps in an extended monotonic generator setting. <i>Probability, Uncertainty and Quantitative Risk</i>, <i>3</i>(9), 1-33. <a href="https://doi.org/10.1186/s41546-018-0034-y" target="_blank">https://doi.org/10.1186/s41546-018-0034-y</a> | |
dc.identifier.other | CONVID_28838596 | |
dc.identifier.uri | https://jyx.jyu.fi/handle/123456789/60988 | |
dc.description.abstract | We show that the comparison results for a backward SDE with jumps
established in Royer (Stoch. Process. Appl 116: 1358–1376, 2006) and Yin and
Mao (J. Math. Anal. Appl 346: 345–358, 2008) hold under more simplified conditions. Moreover, we prove existence and uniqueness allowing the coefficients in
the linear growth- and monotonicity-condition for the generator to be random and
time-dependent. In the L2-case with linear growth, this also generalizes the results
of Kruse and Popier (Stochastics 88: 491–539, 2016). For the proof of the comparison result, we introduce an approximation technique: Given a BSDE driven by
Brownian motion and Poisson random measure, we approximate it by BSDEs where
the Poisson random measure admits only jumps of size larger than 1/n. | fi |
dc.format.mimetype | application/pdf | |
dc.language.iso | eng | |
dc.publisher | Shandong Daxue | |
dc.relation.ispartofseries | Probability, Uncertainty and Quantitative Risk | |
dc.rights | CC BY 4.0 | |
dc.subject.other | backward stochastic differential equation | |
dc.subject.other | Lévy process | |
dc.subject.other | comparison theorem | |
dc.subject.other | existence and uniqueness | |
dc.title | Existence, uniqueness and comparison results for BSDEs with Lévy jumps in an extended monotonic generator setting | |
dc.type | research article | |
dc.identifier.urn | URN:NBN:fi:jyu-201901081092 | |
dc.contributor.laitos | Matematiikan ja tilastotieteen laitos | fi |
dc.contributor.laitos | Department of Mathematics and Statistics | en |
dc.contributor.oppiaine | Matematiikka | fi |
dc.contributor.oppiaine | Mathematics | en |
dc.type.uri | http://purl.org/eprint/type/JournalArticle | |
dc.date.updated | 2019-01-08T10:15:09Z | |
dc.type.coar | http://purl.org/coar/resource_type/c_2df8fbb1 | |
dc.description.reviewstatus | peerReviewed | |
dc.format.pagerange | 1-33 | |
dc.relation.issn | 2367-0126 | |
dc.relation.numberinseries | 9 | |
dc.relation.volume | 3 | |
dc.type.version | publishedVersion | |
dc.rights.copyright | © The Author(s), 2018. | |
dc.rights.accesslevel | openAccess | fi |
dc.type.publication | article | |
dc.subject.yso | differentiaaliyhtälöt | |
dc.subject.yso | stokastiset prosessit | |
dc.format.content | fulltext | |
jyx.subject.uri | http://www.yso.fi/onto/yso/p3552 | |
jyx.subject.uri | http://www.yso.fi/onto/yso/p11400 | |
dc.rights.url | https://creativecommons.org/licenses/by/4.0/ | |
dc.relation.doi | 10.1186/s41546-018-0034-y | |
dc.type.okm | A1 | |