A new Cartan-type property and strict quasicoverings when P = 1 in metric spaces
Lahti, P. (2018). A new Cartan-type property and strict quasicoverings when P = 1 in metric spaces. Annales Academiae Scientiarum Fennicae Mathematica, 43, 1027-1043. https://doi.org/10.5186/AASFM.2018.4364
Julkaistu sarjassa
Annales Academiae Scientiarum Fennicae MathematicaTekijät
Päivämäärä
2018Tekijänoikeudet
© The Author & Academia Scientiarum Fennica, 2018.
In a complete metric space that is equipped with a doubling measure and supports
a Poincaré inequality, we prove a new Cartan-type property for the fine topology in the case p =
1. Then we use this property to prove the existence of 1-finely open strict subsets and strict
quasicoverings of 1-finely open sets. As an application, we study fine Newton–Sobolev spaces in the
case p = 1, that is, Newton–Sobolev spaces defined on 1-finely open sets.
Julkaisija
Suomalainen tiedeakatemiaISSN Hae Julkaisufoorumista
1239-629XAsiasanat
Julkaisu tutkimustietojärjestelmässä
https://converis.jyu.fi/converis/portal/detail/Publication/28719308
Metadata
Näytä kaikki kuvailutiedotKokoelmat
Lisenssi
Samankaltainen aineisto
Näytetään aineistoja, joilla on samankaltainen nimeke tai asiasanat.
-
The Choquet and Kellogg properties for the fine topology when p=1 in metric spaces
Lahti, Panu (Elsevier Masson, 2019)In the setting of a complete metric space that is equipped with a doubling measure and supports a Poincar´e inequality, we prove the fine Kellogg property, the quasi-Lindel¨of principle, and the Choquet property for the ... -
Existence and almost uniqueness for p-harmonic Green functions on bounded domains in metric spaces
Björn, Anders; Björn, Jana; Lehrbäck, Juha (Elsevier, 2020)We study (p-harmonic) singular functions, defined by means of upper gradients, in bounded domains in metric measure spaces. It is shown that singular functions exist if and only if the complement of the domain has positive ... -
On a class of singular measures satisfying a strong annular decay condition
Arroyo, Ángel; Llorente, José G. (American Mathematical Society, 2019)A metric measure space (X, d, t) is said to satisfy the strong annular decay condition if there is a constant C > 0 such that for each x E X and all 0 < r < R. If do., is the distance induced by the co -norm in RN, we ... -
Quasispheres and metric doubling measures
Lohvansuu, Atte; Rajala, Kai; Rasimus, Martti (American Mathematical Society, 2018)Applying the Bonk-Kleiner characterization of Ahlfors 2-regular quasispheres, we show that a metric two-sphere X is a quasisphere if and only if X is linearly locally connected and carries a weak metric doubling measure, ... -
Uniformization with Infinitesimally Metric Measures
Rajala, Kai; Rasimus, Martti; Romney, Matthew (Springer, 2021)We consider extensions of quasiconformal maps and the uniformization theorem to the setting of metric spaces X homeomorphic to R2R2. Given a measure μμ on such a space, we introduce μμ-quasiconformal maps f:X→R2f:X→R2, ...
Ellei toisin mainittu, julkisesti saatavilla olevia JYX-metatietoja (poislukien tiivistelmät) saa vapaasti uudelleenkäyttää CC0-lisenssillä.