Identifying the Sales Patterns of Online Stores with Self-Organising Maps on Time Series Data
Makkonen, M., & Frank, L. (2018). Identifying the Sales Patterns of Online Stores with Self-Organising Maps on Time Series Data. In P. Kourouthanassis, P. Markopoulos, A. Pateli, N. Pouloudi, A. Pucihar, & J. V. D. Cunha (Eds.), MCIS 2018 : 12th Mediterranean Conference on Information Systems (pp. 1-15). MCIS. https://aisel.aisnet.org/mcis2018/11
Editors
Date
2018Copyright
© The Authors, 2018.
Electronic commerce, especially in the business-to-consumer (B2C) context, has for years been a popular
research topic in information systems (IS). However, the prior research on the topic has traditionally
been dominated by the consumer focus instead of the business focus of online stores. For example,
whereas various segmentations exist for online consumers based on their purchase behaviour, no such
segmentations have been developed for online stores based on their sales patterns. In this study, our
objective is to address this gap in prior research by identifying the most typical sales patterns of online
stores operating in the B2C context. By using self-organising maps (SOM) to analyse the monthly sales
time series collected from 399 online stores between January 2016 and December 2017, we are able to
identify four approximately equally sized segments, each with its characteristic sales pattern. More specifically,
two of the segments are characterised by a clear upward or downward trend in the sales,
whereas the other two are characterised by strong seasonal sales variation. We also investigate the
differences between the segments in terms of several key business and technical parameters of the stores
as well as discuss more broadly the applicability of SOM to IS.
...
Publisher
MCISParent publication ISBN
978-960-7260-61-1Conference
Mediterranean Conference on Information SystemsIs part of publication
MCIS 2018 : 12th Mediterranean Conference on Information SystemsKeywords
Original source
https://aisel.aisnet.org/mcis2018/11Publication in research information system
https://converis.jyu.fi/converis/portal/detail/Publication/28724097
Metadata
Show full item recordCollections
License
Related items
Showing items with similar title or keywords.
-
Identifying the Sales Patterns of Online Stores with Time Series Clustering
Makkonen, Markus; Frank, Lauri (University of Maribor Press, 2018)Electronic commerce, especially in the business-to-consumer (B2C) context, has for years been a popular research topic in information systems (IS). However, the prior research on the topic has traditionally been dominated ... -
Identifying relevant segments of AI applications adopters : Expanding the UTAUT2’s variables
Cabrera-Sánchez, Juan-Pedro; Villarejo-Ramos, Ángel F.; Liébana-Cabanillas, Francisco; Shaikh, Aijaz A. (Elsevier, 2021)Artificial intelligence (AI) is a future-defining technology, and AI applications are becoming mainstream in the developed world. Many consumers are adopting and using AI-based apps, devices, and services in their everyday ... -
Forming trust between a consumer and an online store
Juutilainen, Jesse (2019)Trusting an online store is required for a consumer to make a purchase decision. This means they give an online vendor their information and money in exchange for an expectation of service or a product they may not get in ... -
Consumer behavior and marketing in the e-commerce of cosmetics
Ojanaho, Karoliina (2020)Verkkokaupan suosio on kasvanut kiihtyvästi useamman vuoden ajan. Kosmetiikan verkkokauppaa on tutkittu suppeasti aiemmissa tutkimuksissa, kuten myös sitä, miten asiakkaat saadaan ostamaan kosmetiikkaa verkkokaupan kautta. ... -
Verkkokauppojen suosittelujärjestelmien vaikutus ihmisten ostoimpulsiivisuuteen
Hietikko, Kim (2018)Tutkielmassani käsittelen verkkokauppojen suosittelujärjestelmien vaikutusta ihmisten ostoimpulsiivisuuteen. Tutkielma koostuu johdannosta, suosittelujärjestelmät sisältöluvusta, suosittelujärjestelmien vaikutuksesta ...