Näytä suppeat kuvailutiedot

dc.contributor.authorPandey, Gaurav
dc.contributor.authorRen, Zhaochun
dc.contributor.authorWang, Shuaiqiang
dc.contributor.authorVeijalainen, Jari
dc.contributor.authorRijke, Maarten de
dc.date.accessioned2018-11-26T10:32:57Z
dc.date.available2019-05-02T21:35:20Z
dc.date.issued2018
dc.identifier.citationPandey, G., Ren, Z., Wang, S., Veijalainen, J., & Rijke, M. D. (2018). Linear feature extraction for ranking. <i>Information Retrieval</i>, <i>21</i>(6), 481-506. <a href="https://doi.org/10.1007/s10791-018-9330-5" target="_blank">https://doi.org/10.1007/s10791-018-9330-5</a>
dc.identifier.otherCONVID_28040478
dc.identifier.urihttps://jyx.jyu.fi/handle/123456789/60333
dc.description.abstractWe address the feature extraction problem for document ranking in information retrieval. We then propose LifeRank, a Linear feature extraction algorithm for Ranking. In LifeRank, we regard each document collection for ranking as a matrix, referred to as the original matrix. We try to optimize a transformation matrix, so that a new matrix (dataset) can be generated as the product of the original matrix and a transformation matrix. The transformation matrix projects high-dimensional document vectors into lower dimensions. Theoretically, there could be very large transformation matrices, each leading to a new generated matrix. In LifeRank, we produce a transformation matrix so that the generated new matrix can match the learning to rank problem. Extensive experiments on benchmark datasets show the performance gains of LifeRank in comparison with state-of-the-art feature selection algorithms.fi
dc.format.mimetypeapplication/pdf
dc.language.isoeng
dc.publisherSpringer
dc.relation.ispartofseriesInformation Retrieval
dc.rightsIn Copyright
dc.subject.otherfeature extraction
dc.subject.otherdimension reduction
dc.subject.otherlearning to rank
dc.titleLinear feature extraction for ranking
dc.typeresearch article
dc.identifier.urnURN:NBN:fi:jyu-201811234861
dc.contributor.laitosInformaatioteknologian tiedekuntafi
dc.contributor.laitosFaculty of Information Technologyen
dc.contributor.oppiaineTietojenkäsittelytiedefi
dc.contributor.oppiaineComputer Scienceen
dc.type.urihttp://purl.org/eprint/type/JournalArticle
dc.date.updated2018-11-23T13:15:04Z
dc.type.coarhttp://purl.org/coar/resource_type/c_2df8fbb1
dc.description.reviewstatuspeerReviewed
dc.format.pagerange481-506
dc.relation.issn1386-4564
dc.relation.numberinseries6
dc.relation.volume21
dc.type.versionacceptedVersion
dc.rights.copyright© Springer Science+Business Media, LLC, part of Springer Nature 2018.
dc.rights.accesslevelopenAccessfi
dc.type.publicationarticle
dc.subject.ysotiedonhaku
dc.subject.ysotiedonhakujärjestelmät
dc.subject.ysoalgoritmit
dc.subject.ysokoneoppiminen
dc.format.contentfulltext
jyx.subject.urihttp://www.yso.fi/onto/yso/p2964
jyx.subject.urihttp://www.yso.fi/onto/yso/p3926
jyx.subject.urihttp://www.yso.fi/onto/yso/p14524
jyx.subject.urihttp://www.yso.fi/onto/yso/p21846
dc.rights.urlhttp://rightsstatements.org/page/InC/1.0/?language=en
dc.relation.doi10.1007/s10791-018-9330-5
dc.type.okmA1


Aineistoon kuuluvat tiedostot

Thumbnail

Aineisto kuuluu seuraaviin kokoelmiin

Näytä suppeat kuvailutiedot

In Copyright
Ellei muuten mainita, aineiston lisenssi on In Copyright