dc.contributor.author | Pandey, Gaurav | |
dc.contributor.author | Ren, Zhaochun | |
dc.contributor.author | Wang, Shuaiqiang | |
dc.contributor.author | Veijalainen, Jari | |
dc.contributor.author | Rijke, Maarten de | |
dc.date.accessioned | 2018-11-26T10:32:57Z | |
dc.date.available | 2019-05-02T21:35:20Z | |
dc.date.issued | 2018 | |
dc.identifier.citation | Pandey, G., Ren, Z., Wang, S., Veijalainen, J., & Rijke, M. D. (2018). Linear feature extraction for ranking. <i>Information Retrieval</i>, <i>21</i>(6), 481-506. <a href="https://doi.org/10.1007/s10791-018-9330-5" target="_blank">https://doi.org/10.1007/s10791-018-9330-5</a> | |
dc.identifier.other | CONVID_28040478 | |
dc.identifier.uri | https://jyx.jyu.fi/handle/123456789/60333 | |
dc.description.abstract | We address the feature extraction problem for document ranking in information retrieval. We then propose LifeRank, a Linear feature extraction algorithm for Ranking. In LifeRank, we regard each document collection for ranking as a matrix, referred to as the original matrix. We try to optimize a transformation matrix, so that a new matrix (dataset) can be generated as the product of the original matrix and a transformation matrix. The transformation matrix projects high-dimensional document vectors into lower dimensions. Theoretically, there could be very large transformation matrices, each leading to a new generated matrix. In LifeRank, we produce a transformation matrix so that the generated new matrix can match the learning to rank problem. Extensive experiments on benchmark datasets show the performance gains of LifeRank in comparison with state-of-the-art feature selection algorithms. | fi |
dc.format.mimetype | application/pdf | |
dc.language.iso | eng | |
dc.publisher | Springer | |
dc.relation.ispartofseries | Information Retrieval | |
dc.rights | In Copyright | |
dc.subject.other | feature extraction | |
dc.subject.other | dimension reduction | |
dc.subject.other | learning to rank | |
dc.title | Linear feature extraction for ranking | |
dc.type | research article | |
dc.identifier.urn | URN:NBN:fi:jyu-201811234861 | |
dc.contributor.laitos | Informaatioteknologian tiedekunta | fi |
dc.contributor.laitos | Faculty of Information Technology | en |
dc.contributor.oppiaine | Tietojenkäsittelytiede | fi |
dc.contributor.oppiaine | Computer Science | en |
dc.type.uri | http://purl.org/eprint/type/JournalArticle | |
dc.date.updated | 2018-11-23T13:15:04Z | |
dc.type.coar | http://purl.org/coar/resource_type/c_2df8fbb1 | |
dc.description.reviewstatus | peerReviewed | |
dc.format.pagerange | 481-506 | |
dc.relation.issn | 1386-4564 | |
dc.relation.numberinseries | 6 | |
dc.relation.volume | 21 | |
dc.type.version | acceptedVersion | |
dc.rights.copyright | © Springer Science+Business Media, LLC, part of Springer Nature 2018. | |
dc.rights.accesslevel | openAccess | fi |
dc.type.publication | article | |
dc.subject.yso | tiedonhaku | |
dc.subject.yso | tiedonhakujärjestelmät | |
dc.subject.yso | algoritmit | |
dc.subject.yso | koneoppiminen | |
dc.format.content | fulltext | |
jyx.subject.uri | http://www.yso.fi/onto/yso/p2964 | |
jyx.subject.uri | http://www.yso.fi/onto/yso/p3926 | |
jyx.subject.uri | http://www.yso.fi/onto/yso/p14524 | |
jyx.subject.uri | http://www.yso.fi/onto/yso/p21846 | |
dc.rights.url | http://rightsstatements.org/page/InC/1.0/?language=en | |
dc.relation.doi | 10.1007/s10791-018-9330-5 | |
dc.type.okm | A1 | |