Linear feature extraction for ranking
Pandey, G., Ren, Z., Wang, S., Veijalainen, J., & Rijke, M. D. (2018). Linear feature extraction for ranking. Information Retrieval, 21(6), 481-506. https://doi.org/10.1007/s10791-018-9330-5
Julkaistu sarjassa
Information RetrievalPäivämäärä
2018Tekijänoikeudet
© Springer Science+Business Media, LLC, part of Springer Nature 2018.
We address the feature extraction problem for document ranking in information retrieval. We then propose LifeRank, a Linear feature extraction algorithm for Ranking. In LifeRank, we regard each document collection for ranking as a matrix, referred to as the original matrix. We try to optimize a transformation matrix, so that a new matrix (dataset) can be generated as the product of the original matrix and a transformation matrix. The transformation matrix projects high-dimensional document vectors into lower dimensions. Theoretically, there could be very large transformation matrices, each leading to a new generated matrix. In LifeRank, we produce a transformation matrix so that the generated new matrix can match the learning to rank problem. Extensive experiments on benchmark datasets show the performance gains of LifeRank in comparison with state-of-the-art feature selection algorithms.
Julkaisija
SpringerISSN Hae Julkaisufoorumista
1386-4564Asiasanat
Julkaisu tutkimustietojärjestelmässä
https://converis.jyu.fi/converis/portal/detail/Publication/28040478
Metadata
Näytä kaikki kuvailutiedotKokoelmat
Lisenssi
Samankaltainen aineisto
Näytetään aineistoja, joilla on samankaltainen nimeke tai asiasanat.
-
Feature extraction for supervised learning in knowledge discovery systems
Pechenizkiy, Mykola (University of Jyväskylä, 2005)Tiedon louhinnalla pyritään paljastamaan tietokannasta tietomassaan sisältyviä säännönmukaisuuksia, joiden olemassaolosta ei vielä olla tietoisia. Kun tietokantaan sisältyvät tiedot ovat kovin moniulotteisia, yksittäisten ... -
Taming big knowledge evolution
Cochez, Michael (University of Jyväskylä, 2016)Information and its derived knowledge are not static. Instead, information is changing over time and our understanding of it evolves with our ability and willingness to consume the information. When compared to humans, ... -
Improving search engine results using different machine learning models and tools
Ambaye, Michael (2020)The aim of this thesis is to provide viable methods that can be used to improve the return position (RP) of a relevant document when a natural language query (NLQ) is applied by a user. For the purpose of demonstration, ... -
Unstable feature relevance in classification tasks
Skrypnyk, Iryna (University of Jyväskylä, 2011) -
Additive autoencoder for dimension estimation
Kärkkäinen, Tommi; Hänninen, Jan (Elsevier BV, 2023)Dimension reduction is one of the key data transformation techniques in machine learning and knowledge discovery. It can be realized by using linear and nonlinear transformation techniques. An additive autoencoder for ...
Ellei toisin mainittu, julkisesti saatavilla olevia JYX-metatietoja (poislukien tiivistelmät) saa vapaasti uudelleenkäyttää CC0-lisenssillä.