Show simple item record

dc.contributor.authorPandey, Gaurav
dc.contributor.authorRen, Zhaochun
dc.contributor.authorWang, Shuaiqiang
dc.contributor.authorVeijalainen, Jari
dc.contributor.authorRijke, Maarten de
dc.date.accessioned2018-11-26T10:32:57Z
dc.date.available2019-05-02T21:35:20Z
dc.date.issued2018
dc.identifier.citationPandey, G., Ren, Z., Wang, S., Veijalainen, J., & Rijke, M. D. (2018). Linear feature extraction for ranking. <i>Information Retrieval</i>, <i>21</i>(6), 481-506. <a href="https://doi.org/10.1007/s10791-018-9330-5" target="_blank">https://doi.org/10.1007/s10791-018-9330-5</a>
dc.identifier.otherCONVID_28040478
dc.identifier.urihttps://jyx.jyu.fi/handle/123456789/60333
dc.description.abstractWe address the feature extraction problem for document ranking in information retrieval. We then propose LifeRank, a Linear feature extraction algorithm for Ranking. In LifeRank, we regard each document collection for ranking as a matrix, referred to as the original matrix. We try to optimize a transformation matrix, so that a new matrix (dataset) can be generated as the product of the original matrix and a transformation matrix. The transformation matrix projects high-dimensional document vectors into lower dimensions. Theoretically, there could be very large transformation matrices, each leading to a new generated matrix. In LifeRank, we produce a transformation matrix so that the generated new matrix can match the learning to rank problem. Extensive experiments on benchmark datasets show the performance gains of LifeRank in comparison with state-of-the-art feature selection algorithms.fi
dc.format.mimetypeapplication/pdf
dc.language.isoeng
dc.publisherSpringer
dc.relation.ispartofseriesInformation Retrieval
dc.rightsIn Copyright
dc.subject.otherfeature extraction
dc.subject.otherdimension reduction
dc.subject.otherlearning to rank
dc.titleLinear feature extraction for ranking
dc.typeresearch article
dc.identifier.urnURN:NBN:fi:jyu-201811234861
dc.contributor.laitosInformaatioteknologian tiedekuntafi
dc.contributor.laitosFaculty of Information Technologyen
dc.contributor.oppiaineTietojenkäsittelytiedefi
dc.contributor.oppiaineComputer Scienceen
dc.type.urihttp://purl.org/eprint/type/JournalArticle
dc.date.updated2018-11-23T13:15:04Z
dc.type.coarhttp://purl.org/coar/resource_type/c_2df8fbb1
dc.description.reviewstatuspeerReviewed
dc.format.pagerange481-506
dc.relation.issn1386-4564
dc.relation.numberinseries6
dc.relation.volume21
dc.type.versionacceptedVersion
dc.rights.copyright© Springer Science+Business Media, LLC, part of Springer Nature 2018.
dc.rights.accesslevelopenAccessfi
dc.type.publicationarticle
dc.subject.ysotiedonhaku
dc.subject.ysotiedonhakujärjestelmät
dc.subject.ysoalgoritmit
dc.subject.ysokoneoppiminen
dc.format.contentfulltext
jyx.subject.urihttp://www.yso.fi/onto/yso/p2964
jyx.subject.urihttp://www.yso.fi/onto/yso/p3926
jyx.subject.urihttp://www.yso.fi/onto/yso/p14524
jyx.subject.urihttp://www.yso.fi/onto/yso/p21846
dc.rights.urlhttp://rightsstatements.org/page/InC/1.0/?language=en
dc.relation.doi10.1007/s10791-018-9330-5
dc.type.okmA1


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record

In Copyright
Except where otherwise noted, this item's license is described as In Copyright