dc.contributor.author | Zhang, Qing | |
dc.contributor.author | Hu, Guoqiang | |
dc.contributor.author | Tian, Lili | |
dc.contributor.author | Ristaniemi, Tapani | |
dc.contributor.author | Wang, Huili | |
dc.contributor.author | Chen, Hongjun | |
dc.contributor.author | Wu, Jianlin | |
dc.contributor.author | Cong, Fengyu | |
dc.date.accessioned | 2018-11-23T12:51:14Z | |
dc.date.available | 2019-03-21T22:35:35Z | |
dc.date.issued | 2018 | |
dc.identifier.citation | Zhang, Q., Hu, G., Tian, L., Ristaniemi, T., Wang, H., Chen, H., Wu, J., & Cong, F. (2018). Examining stability of independent component analysis based on coefficient and component matrices for voxel-based morphometry of structural magnetic resonance imaging. <i>Cognitive Neurodynamics</i>, <i>12</i>(5), 461-470. <a href="https://doi.org/10.1007/s11571-018-9484-2" target="_blank">https://doi.org/10.1007/s11571-018-9484-2</a> | |
dc.identifier.other | CONVID_27960846 | |
dc.identifier.other | TUTKAID_77128 | |
dc.identifier.uri | https://jyx.jyu.fi/handle/123456789/60313 | |
dc.description.abstract | Independent component analysis (ICA) on group-level voxel-based morphometry
(VBM) produces the coefficient matrix and the component matrix. The former
contains variability among multiple subjects for further statistical analysis, and the
latter reveals spatial maps common for all subjects. ICA algorithms converge to local
optimization points in practice and the mostly applied stability investigation approach
examines the stability of the extracted components. We found that the practically
stable components do not guarantee to produce the practically stable coefficients of
ICA decomposition for the further statistical analysis.
Consequently, we proposed a novel approach including two steps: 1), the stability
index for the coefficient matrix and the stability index for the component matrix were
examined, respectively; 2) the two indices were multiplied to analyze the stability of
ICA decomposition.
The proposed approach was used to study the sMRI data of Type II diabetes mellitus
group (DM) and the healthy control group (HC). Group differences in VBM were
found in the superior temporal gyrus. Besides, it was revealed that the VBMs of the
region of the HC group were significantly correlated with Montreal Cognitive
Assessment (MoCA) describing the level of cognitive disorder.
In contrast to the widely applied approach to investigating the stability of the
extracted components for ICA decomposition, we proposed to examine the stability of
ICA decomposition by fusion the stability of both coefficient matrix and the
component matrix. Therefore, the proposed approach can examine the stability of ICA
decomposition sufficiently. | fi |
dc.format.mimetype | application/pdf | |
dc.language.iso | eng | |
dc.publisher | Springer Netherlands | |
dc.relation.ispartofseries | Cognitive Neurodynamics | |
dc.rights | In Copyright | |
dc.subject.other | magneettitutkimus | |
dc.subject.other | voxel-based morphometry | |
dc.subject.other | back-projection | |
dc.subject.other | Montreal cognitive assessment | |
dc.subject.other | stability | |
dc.subject.other | coefficient matrix | |
dc.subject.other | component matrix | |
dc.title | Examining stability of independent component analysis based on coefficient and component matrices for voxel-based morphometry of structural magnetic resonance imaging | |
dc.type | article | |
dc.identifier.urn | URN:NBN:fi:jyu-201811224841 | |
dc.contributor.laitos | Informaatioteknologian tiedekunta | fi |
dc.contributor.laitos | Psykologian laitos | fi |
dc.contributor.laitos | Faculty of Information Technology | en |
dc.contributor.laitos | Department of Psychology | en |
dc.contributor.oppiaine | Tietotekniikka | fi |
dc.contributor.oppiaine | Psykologia | fi |
dc.contributor.oppiaine | Mathematical Information Technology | en |
dc.contributor.oppiaine | Psychology | en |
dc.type.uri | http://purl.org/eprint/type/JournalArticle | |
dc.date.updated | 2018-11-22T13:15:19Z | |
dc.type.coar | http://purl.org/coar/resource_type/c_2df8fbb1 | |
dc.description.reviewstatus | peerReviewed | |
dc.format.pagerange | 461-470 | |
dc.relation.issn | 1871-4080 | |
dc.relation.numberinseries | 5 | |
dc.relation.volume | 12 | |
dc.type.version | acceptedVersion | |
dc.rights.copyright | © Springer Science+Business Media B.V., part of Springer Nature 2018 | |
dc.rights.accesslevel | openAccess | fi |
dc.subject.yso | signaalianalyysi | |
dc.subject.yso | aivokuori | |
dc.subject.yso | diabetes | |
dc.subject.yso | riippumattomien komponenttien analyysi | |
dc.format.content | fulltext | |
jyx.subject.uri | http://www.yso.fi/onto/yso/p26805 | |
jyx.subject.uri | http://www.yso.fi/onto/yso/p7039 | |
jyx.subject.uri | http://www.yso.fi/onto/yso/p8304 | |
jyx.subject.uri | http://www.yso.fi/onto/yso/p38529 | |
dc.rights.url | http://rightsstatements.org/page/InC/1.0/?language=en | |
dc.relation.doi | 10.1007/s11571-018-9484-2 | |
dc.type.okm | A1 | |