Näytä suppeat kuvailutiedot

dc.contributor.authorMatculevich, Svetlana
dc.contributor.authorWolfmayr, Monika
dc.date.accessioned2018-10-03T10:23:47Z
dc.date.available2021-01-03T22:35:10Z
dc.date.issued2018
dc.identifier.citationMatculevich, S., & Wolfmayr, M. (2018). On the a posteriori error analysis for linear Fokker-Planck models in convection-dominated diffusion problems. <i>Applied Mathematics and Computation</i>, <i>339</i>, 779-804. <a href="https://doi.org/10.1016/j.amc.2018.05.050" target="_blank">https://doi.org/10.1016/j.amc.2018.05.050</a>
dc.identifier.otherCONVID_28252274
dc.identifier.otherTUTKAID_78763
dc.identifier.urihttps://jyx.jyu.fi/handle/123456789/59753
dc.description.abstractThis work is aimed at the derivation of reliable and efficient a posteriori error estimates for convection-dominated diffusion problems motivated by a linear Fokker–Planck problem appearing in computational neuroscience. We obtain computable error bounds of functional type for the static and time-dependent case and for different boundary conditions (mixed and pure Neumann boundary conditions). Finally, we present a set of various numerical examples including discussions on mesh adaptivity and space-time discretisation. The numerical results confirm the reliability and efficiency of the error estimates derived.en
dc.format.mimetypeapplication/pdf
dc.language.isoeng
dc.publisherElsevier
dc.relation.ispartofseriesApplied Mathematics and Computation
dc.rightsIn Copyright
dc.subject.othera posteriori error estimation
dc.subject.otherconvection-dominated diffusion problems
dc.subject.otherelliptic partial differential equations
dc.subject.otherparabolic partial differential equations
dc.subject.othermesh-adaptivity
dc.titleOn the a posteriori error analysis for linear Fokker-Planck models in convection-dominated diffusion problems
dc.typearticle
dc.identifier.urnURN:NBN:fi:jyu-201810034329
dc.contributor.laitosInformaatioteknologian tiedekuntafi
dc.contributor.laitosFaculty of Information Technologyen
dc.contributor.oppiaineTietotekniikkafi
dc.contributor.oppiaineMathematical Information Technologyen
dc.type.urihttp://purl.org/eprint/type/JournalArticle
dc.date.updated2018-10-03T09:15:39Z
dc.type.coarhttp://purl.org/coar/resource_type/c_2df8fbb1
dc.description.reviewstatuspeerReviewed
dc.format.pagerange779-804
dc.relation.issn0096-3003
dc.relation.numberinseries0
dc.relation.volume339
dc.type.versionacceptedVersion
dc.rights.copyright© 2018 Elsevier Inc
dc.rights.accesslevelopenAccessfi
dc.relation.grantnumber295897
dc.subject.ysodiffuusio (fysikaaliset ilmiöt)
dc.subject.ysoosittaisdifferentiaaliyhtälöt
dc.subject.ysovirheanalyysi
dc.format.contentfulltext
jyx.subject.urihttp://www.yso.fi/onto/yso/p18009
jyx.subject.urihttp://www.yso.fi/onto/yso/p12392
jyx.subject.urihttp://www.yso.fi/onto/yso/p9865
dc.rights.urlhttp://rightsstatements.org/page/InC/1.0/?language=en
dc.relation.doi10.1016/j.amc.2018.05.050
dc.relation.funderSuomen Akatemiafi
dc.relation.funderAcademy of Finlanden
jyx.fundingprogramAkatemiahanke, SAfi
jyx.fundingprogramAcademy Project, AoFen
jyx.fundinginformationThe authors gratefully acknowledge the financial support by the Austrian Science Fund (FWF) through the NFN S117-03 project, and by the Academy of Finland, grant 295897.
dc.type.okmA1


Aineistoon kuuluvat tiedostot

Thumbnail

Aineisto kuuluu seuraaviin kokoelmiin

Näytä suppeat kuvailutiedot

In Copyright
Ellei muuten mainita, aineiston lisenssi on In Copyright