Show simple item record

dc.contributor.authorMatculevich, Svetlana
dc.contributor.authorWolfmayr, Monika
dc.date.accessioned2018-10-03T10:23:47Z
dc.date.available2021-01-03T22:35:10Z
dc.date.issued2018
dc.identifier.citationMatculevich, S., & Wolfmayr, M. (2018). On the a posteriori error analysis for linear Fokker-Planck models in convection-dominated diffusion problems. <i>Applied Mathematics and Computation</i>, <i>339</i>, 779-804. <a href="https://doi.org/10.1016/j.amc.2018.05.050" target="_blank">https://doi.org/10.1016/j.amc.2018.05.050</a>
dc.identifier.otherCONVID_28252274
dc.identifier.otherTUTKAID_78763
dc.identifier.urihttps://jyx.jyu.fi/handle/123456789/59753
dc.description.abstractThis work is aimed at the derivation of reliable and efficient a posteriori error estimates for convection-dominated diffusion problems motivated by a linear Fokker–Planck problem appearing in computational neuroscience. We obtain computable error bounds of functional type for the static and time-dependent case and for different boundary conditions (mixed and pure Neumann boundary conditions). Finally, we present a set of various numerical examples including discussions on mesh adaptivity and space-time discretisation. The numerical results confirm the reliability and efficiency of the error estimates derived.en
dc.format.mimetypeapplication/pdf
dc.language.isoeng
dc.publisherElsevier
dc.relation.ispartofseriesApplied Mathematics and Computation
dc.rightsIn Copyright
dc.subject.othera posteriori error estimation
dc.subject.otherconvection-dominated diffusion problems
dc.subject.otherelliptic partial differential equations
dc.subject.otherparabolic partial differential equations
dc.subject.othermesh-adaptivity
dc.titleOn the a posteriori error analysis for linear Fokker-Planck models in convection-dominated diffusion problems
dc.typearticle
dc.identifier.urnURN:NBN:fi:jyu-201810034329
dc.contributor.laitosInformaatioteknologian tiedekuntafi
dc.contributor.laitosFaculty of Information Technologyen
dc.contributor.oppiaineTietotekniikkafi
dc.contributor.oppiaineMathematical Information Technologyen
dc.type.urihttp://purl.org/eprint/type/JournalArticle
dc.date.updated2018-10-03T09:15:39Z
dc.type.coarhttp://purl.org/coar/resource_type/c_2df8fbb1
dc.description.reviewstatuspeerReviewed
dc.format.pagerange779-804
dc.relation.issn0096-3003
dc.relation.numberinseries0
dc.relation.volume339
dc.type.versionacceptedVersion
dc.rights.copyright© 2018 Elsevier Inc
dc.rights.accesslevelopenAccessfi
dc.relation.grantnumber295897
dc.subject.ysodiffuusio (fysikaaliset ilmiöt)
dc.subject.ysoosittaisdifferentiaaliyhtälöt
dc.subject.ysovirheanalyysi
dc.format.contentfulltext
jyx.subject.urihttp://www.yso.fi/onto/yso/p18009
jyx.subject.urihttp://www.yso.fi/onto/yso/p12392
jyx.subject.urihttp://www.yso.fi/onto/yso/p9865
dc.rights.urlhttp://rightsstatements.org/page/InC/1.0/?language=en
dc.relation.doi10.1016/j.amc.2018.05.050
dc.relation.funderSuomen Akatemiafi
dc.relation.funderAcademy of Finlanden
jyx.fundingprogramAkatemiahanke, SAfi
jyx.fundingprogramAcademy Project, AoFen
jyx.fundinginformationThe authors gratefully acknowledge the financial support by the Austrian Science Fund (FWF) through the NFN S117-03 project, and by the Academy of Finland, grant 295897.
dc.type.okmA1


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record

In Copyright
Except where otherwise noted, this item's license is described as In Copyright