Personalization of Multicriteria Decision Support Systems
Ehrgott, M., Eichfelder, G., Küfer, K.-H., Lofi, C., Miettinen, K., Paquete, L., Ruzika, S., Sayın, S., Steuer, R. E., Stewart, T. J., Stiglmayr, M., & Vanderpooten, D. (2018). Personalization of Multicriteria Decision Support Systems. In K. Klamroth, J. Knowles, G. Rudolph, & M. Wiecek (Eds.), Personalized Multiobjective Optimization : An Analytics Perspective (Dagstuhl Seminar 18031) (pp. 55-70). Dagstuhl Publishing. Dagstuhl Reports, 8. https://doi.org/10.4230/DagRep.8.1.33
Published in
Dagstuhl ReportsAuthors
Date
2018Copyright
© Matthias Ehrgott, Gabriele Eichfelder, Karl-Heinz Küfer, Christoph Lofi, Kaisa Miettinen,
Luís Paquete, Stefan Ruzika, Serpil Sayın, Ralph E. Steuer, Theodor J. Stewart, Michael Stiglmayr,
and Daniel Vanderpooten
The Dagstuhl Seminar 18031 Personalization in Multiobjective Optimization: An Analytics Perspective carried on a series of five previous Dagstuhl Seminars (04461, 06501, 09041, 12041 and 15031) that were focused on Multiobjective Optimization. The continuing goal of this series is to strengthen the links between the Evolutionary Multiobjective Optimization (EMO) and the Multiple Criteria Decision Making (MCDM) communities, two of the largest communities concerned with multiobjective optimization today. Personalization in Multiobjective Optimization, the topic of this seminar, was motivated by the scientific challenges generated by personalization, mass customization, and mass data, and thus crosslinks application challenges with research domains integrating all aspects of EMO and MCDM. The outcome of the seminar was a new perspective on the opportunities as well as the research requirements for multiobjective optimization in the thriving fields of data analytics and personalization. Several multi-disciplinary research projects and new collaborations were initiated during the seminar, further interlacing the two communities of EMO and MCDM.
...
Publisher
Dagstuhl PublishingConference
Dagstuhl SeminarIs part of publication
Personalized Multiobjective Optimization : An Analytics Perspective (Dagstuhl Seminar 18031)ISSN Search the Publication Forum
2192-5283Keywords
Publication in research information system
https://converis.jyu.fi/converis/portal/detail/Publication/28251572
Metadata
Show full item recordCollections
License
Related items
Showing items with similar title or keywords.
-
Flexible data driven inventory management with interactive multiobjective lot size optimization
Heikkinen, Risto; Sipilä, Juha; Ojalehto, Vesa; Miettinen, Kaisa (Inderscience Publishers, 2023)We study data-driven decision support and formalise a path from data to decision making. We focus on lot sizing in inventory management with stochastic demand and propose an interactive multi-objective optimisation approach. ... -
Situation awareness in clinical decision support system : case trauma team
Puhilas, Paula (2015)Tällä hetkellä tutkimuskohteessa ei ole käytössä elektronista päätöksen- tukijärjestelmää. Tutkimuksen tarkoituksena oli selvittää, miten kliininen päätöksentukijärjestelmä voi auttaa tilannetietoisuuden muodostumista ... -
Long-term impacts of increased timber harvests on ecosystem services and biodiversity : A scenario study based on national forest inventory data
Blattert, Clemens; Lemm, Renato; Thürig, Esther; Stadelmann, Golo; Brändli, Urs-Beat; Temperli, Christian (Elsevier BV, 2020)The transition to a climate-neutral economy is expected to increase future timber demands and endanger the multifunctionality of forests. National scenario analyses are needed to determine long-term forest management impacts ... -
Interactive evolutionary multiobjective optimization with modular physical user interface
Mazumdar, Atanu; Otayagich, Stefan; Miettinen, Kaisa (ACM, 2022)Incorporating the preferences of a domain expert, a decision-maker (DM), in solving multiobjective optimization problems increased in popularity in recent years. The DM can choose to use different types of preferences ... -
Comparing reference point based interactive multiobjective optimization methods without a human decision maker
Chen, Lu; Miettinen, Kaisa; Xin, Bin; Ojalehto, Vesa (Springer, 2023)Interactive multiobjective optimization methods have proven promising in solving optimization problems with conflicting objectives since they iteratively incorporate preference information of a decision maker in the search ...