Solving multiobjective optimization problems with decision uncertainty : an interactive approach
Zhou-Kangas, Y., Miettinen, K., & Sindhya, K. (2019). Solving multiobjective optimization problems with decision uncertainty : an interactive approach. Journal of Business Economics, 89(1), 25-51. https://doi.org/10.1007/s11573-018-0900-1
Julkaistu sarjassa
Journal of Business EconomicsPäivämäärä
2019Oppiaine
TietotekniikkaLaskennallinen tiedeMultiobjective Optimization GroupMathematical Information TechnologyComputational ScienceMultiobjective Optimization GroupTekijänoikeudet
© Springer-Verlag GmbH 2018
We propose an interactive approach to support a decision maker to find a most preferred robust solution to multiobjective optimization problems with decision uncertainty. A new robustness measure that is understandable for the decision maker is incorporated as an additional objective in the problem formulation. The proposed interactive approach utilizes elements of the synchronous NIMBUS method and is aimed at supporting the decision maker to consider the objective function values and the robustness of a solution simultaneously. In the interactive approach, we offer different alternatives for the decision maker to express her/his preferences related to the robustness of a solution. To consolidate the interactive approach, we tailor a visualization to illustrate both the objective function values and the robustness of a solution. We demonstrate the advantages of the interactive approach by solving example problems.
Julkaisija
SpringerISSN Hae Julkaisufoorumista
0044-2372Asiasanat
Julkaisu tutkimustietojärjestelmässä
https://converis.jyu.fi/converis/portal/detail/Publication/27960134
Metadata
Näytä kaikki kuvailutiedotKokoelmat
Lisenssi
Samankaltainen aineisto
Näytetään aineistoja, joilla on samankaltainen nimeke tai asiasanat.
-
Decision making in multiobjective optimization problems under uncertainty : balancing between robustness and quality
Zhou-Kangas, Yue; Miettinen, Kaisa (Springer, 2019)As an emerging research field, multiobjective robust optimization employs minmax robustness as the most commonly used concept. Light robustness is a concept in which a parameter, tolerable degradations, can be used to ... -
DESMILS : a decision support approach for multi-item lot sizing using interactive multiobjective optimization
Kania, Adhe; Afsar, Bekir; Miettinen, Kaisa; Sipilä, Juha (Springer, 2024)We propose a decision support approach, called DESMILS, to solve multi-item lot sizing problems with a large number of items by using single-item multiobjective lot sizing models. This approach for making lot sizing decisions ... -
Interactive Multiobjective Robust Optimization with NIMBUS
Zhou-Kangas, Yue; Miettinen, Kaisa; Sindhya, Karthik (Springer, 2018)In this paper, we introduce the MuRO-NIMBUS method for solving multiobjective optimization problems with uncertain parameters. The concept of set-based minmax robust Pareto optimality is utilized to tackle the uncertainty ... -
LR-NIMBUS : an interactive algorithm for uncertain multiobjective optimization with lightly robust efficient solutions
Koushki, Javad; Miettinen, Kaisa; Soleimani-damaneh, Majid (Springer Science and Business Media LLC, 2022)In this paper, we develop an interactive algorithm to support a decision maker to find a most preferred lightly robust efficient solution when solving uncertain multiobjective optimization problems. It extends the interactive ... -
Let decision-makers direct the search for robust solutions : An interactive framework for multiobjective robust optimization under deep uncertainty
Shavazipour, Babooshka; Kwakkel, Jan, H.; Miettinen, Kaisa (Elsevier, 2025)The robust decision-making framework (RDM) has been extended to consider multiple objective functions and scenarios. However, the practical applications of these extensions are mostly limited to academic case studies. The ...
Ellei toisin mainittu, julkisesti saatavilla olevia JYX-metatietoja (poislukien tiivistelmät) saa vapaasti uudelleenkäyttää CC0-lisenssillä.