Let decision-makers direct the search for robust solutions : An interactive framework for multiobjective robust optimization under deep uncertainty
Shavazipour, B., Kwakkel, J., & Miettinen, K. (2025). Let decision-makers direct the search for robust solutions : An interactive framework for multiobjective robust optimization under deep uncertainty. Environmental Modelling and Software, 183, Article 106233. https://doi.org/10.1016/j.envsoft.2024.106233
Julkaistu sarjassa
Environmental Modelling and SoftwarePäivämäärä
2025Tekijänoikeudet
© 2024 The Authors. Published by Elsevier Ltd.
The robust decision-making framework (RDM) has been extended to consider multiple objective functions and scenarios. However, the practical applications of these extensions are mostly limited to academic case studies. The main reasons are: (i) substantial cognitive load in tracking all the trade-offs across scenarios and the interplay between uncertainties and trade-offs, (ii) lack of decision-makers’ involvement in solution generation and confidence. To address these problems, this study proposes a novel interactive framework involving decision-makers in searching for the most preferred robust solutions utilizing interactive multiobjective optimization methods. The proposed interactive framework provides a learning phase for decision-makers to discover the problem characteristics, the feasibility of their preferences, and how uncertainty may affect the outcomes of a decision. This involvement and learning allow them to control and direct the multiobjective search during the solution generation process, boosting their confidence and assurance in implementing the identified robust solutions in practice.
...
Julkaisija
ElsevierISSN Hae Julkaisufoorumista
1364-8152Asiasanat
Julkaisu tutkimustietojärjestelmässä
https://converis.jyu.fi/converis/portal/detail/Publication/243358839
Metadata
Näytä kaikki kuvailutiedotKokoelmat
Rahoittaja(t)
Suomen AkatemiaRahoitusohjelmat(t)
Akatemiahanke, SALisätietoja rahoituksesta
This research was partly funded by the Research Council of Finland (grant no. 322221).Lisenssi
Samankaltainen aineisto
Näytetään aineistoja, joilla on samankaltainen nimeke tai asiasanat.
-
Decision making in multiobjective optimization problems under uncertainty : balancing between robustness and quality
Zhou-Kangas, Yue; Miettinen, Kaisa (Springer, 2019)As an emerging research field, multiobjective robust optimization employs minmax robustness as the most commonly used concept. Light robustness is a concept in which a parameter, tolerable degradations, can be used to ... -
Multi-scenario multi-objective robust optimization under deep uncertainty : A posteriori approach
Shavazipour, Babooshka; Kwakkel, Jan H.; Miettinen, Kaisa (Elsevier BV, 2021)This paper proposes a novel optimization approach for multi-scenario multi-objective robust decision making, as well as an alternative way for scenario discovery and identifying vulnerable scenarios even before any solution ... -
LR-NIMBUS : an interactive algorithm for uncertain multiobjective optimization with lightly robust efficient solutions
Koushki, Javad; Miettinen, Kaisa; Soleimani-damaneh, Majid (Springer Science and Business Media LLC, 2022)In this paper, we develop an interactive algorithm to support a decision maker to find a most preferred lightly robust efficient solution when solving uncertain multiobjective optimization problems. It extends the interactive ... -
Interactive methods for multiobjective robust optimization
Zhou-Kangas, Yue (Jyväskylän yliopisto, 2018) -
Desirable properties of performance indicators for assessing interactive evolutionary multiobjective optimization methods
Aghaei Pour, Pouya; Bandaru, Sunith; Afsar, Bekir; Miettinen, Kaisa (ACM, 2022)Interactive methods support decision makers in finding the most preferred solution in multiobjective optimization problems. They iteratively incorporate the decision maker's preference information to find the best balance ...
Ellei toisin mainittu, julkisesti saatavilla olevia JYX-metatietoja (poislukien tiivistelmät) saa vapaasti uudelleenkäyttää CC0-lisenssillä.