Removable singularities for div v=f in weighted Lebesgue spaces
Moonens, L., Russ, E., & Tuominen, H. (2018). Removable singularities for div v=f in weighted Lebesgue spaces. Indiana University Mathematics Journal, 67(2), 859-887. https://doi.org/10.1512/iumj.2018.67.6310
Julkaistu sarjassa
Indiana University Mathematics JournalPäivämäärä
2018Tekijänoikeudet
© the Authors & Indiana University, 2018
Let w ∈ L
1
loc(R
n) be a positive weight. Assuming a doubling condition
and an L
1 Poincar´e inequality on balls for the measure w(x)dx, as well
as a growth condition on w, we prove that the compact subsets of R
n which are
removable for the distributional divergence in L∞
1/w are exactly those with vanishing
weighted Hausdorff measure. We also give such a characterization for L
p
1/w,
1 < p < +∞, in terms of capacity. This generalizes results due to Phuc and
Torres, Silhavy and the first author.
Julkaisija
Indiana UniversityISSN Hae Julkaisufoorumista
0022-2518Julkaisu tutkimustietojärjestelmässä
https://converis.jyu.fi/converis/portal/detail/Publication/26359842
Metadata
Näytä kaikki kuvailutiedotKokoelmat
Lisenssi
Samankaltainen aineisto
Näytetään aineistoja, joilla on samankaltainen nimeke tai asiasanat.
-
A short proof of the infinitesimal Hilbertianity of the weighted Euclidean space
Di Marino, Simone; Lučić, Danka; Pasqualetto, Enrico (Institut de France, 2020)We provide a quick proof of the following known result: the Sobolev space associated with the Euclidean space, endowed with the Euclidean distance and an arbitrary Radon measure, is Hilbert. Our new approach relies upon ... -
Characterisation of upper gradients on the weighted Euclidean space and applications
Lučić, Danka; Pasqualetto, Enrico; Rajala, Tapio (Springer, 2021)In the context of Euclidean spaces equipped with an arbitrary Radon measure, we prove the equivalence among several different notions of Sobolev space present in the literature and we characterise the minimal weak upper ... -
On the BBM-Phenomenon in Fractional Poincaré–Sobolev Inequalities with Weights
Hurri-Syrjänen, Ritva; Martínez-Perales, Javier C.; Pérez, Carlos; Vähäkangas, Antti V. (Oxford University Press (OUP), 2023)In this paper, we unify and improve some of the results of Bourgain, Brezis, and Mironescu and the weighted Poincaré–Sobolev estimate by Fabes, Kenig, and Serapioni. More precisely, we get weighted counterparts of the ... -
Infinitesimal Hilbertianity of Weighted Riemannian Manifolds
Lučić, Danka; Pasqualetto, Enrico (Canadian Mathematical Society, 2020)The main result of this paper is the following: any weighted Riemannian manifold (M,g,𝜇), i.e., a Riemannian manifold (M,g) endowed with a generic non-negative Radon measure 𝜇, is infinitesimally Hilbertian, which ... -
On the singular problem involving fractional g-Laplacian
Bal, Kaushik; Mishra, Riddhi; Mohanta, Kaushik (Taylor & Francis, 2024)In this paper, we show that the existence of a positive weak solution to the equation (−Δg)su=fu−q(x)inΩ, where Ω is a smooth bounded domain in RN, q∈C1(Ω¯¯), and (−Δg)s is the fractional g-Laplacian with g is the ...
Ellei toisin mainittu, julkisesti saatavilla olevia JYX-metatietoja (poislukien tiivistelmät) saa vapaasti uudelleenkäyttää CC0-lisenssillä.