Show simple item record

dc.contributor.authorMix, L. Tyler
dc.contributor.authorCarroll, Elizabeth C.
dc.contributor.authorMorozov, Dmitry
dc.contributor.authorPan, Jie
dc.contributor.authorGordon, Wendy Ryan
dc.contributor.authorPhilip, Andrew
dc.contributor.authorFuzell, Jack
dc.contributor.authorKumauchi, Masato
dc.contributor.authorvan Stokkum, Ivo
dc.contributor.authorGroenhof, Gerrit
dc.contributor.authorHoff, Wouter D.
dc.contributor.authorLarsen, Delmar S.
dc.date.accessioned2018-04-17T11:43:06Z
dc.date.available2019-02-21T22:35:25Z
dc.date.issued2018
dc.identifier.citationMix, L. T., Carroll, E. C., Morozov, D., Pan, J., Gordon, W. R., Philip, A., Fuzell, J., Kumauchi, M., van Stokkum, I., Groenhof, G., Hoff, W. D., & Larsen, D. S. (2018). Excitation-Wavelength Dependent Photocycle Initiation Dynamics Resolve Heterogeneity in the Photoactive Yellow Protein from Halorhodospira halophila. <i>Biochemistry</i>, <i>57</i>(1), 1733-1747. <a href="https://doi.org/10.1021/acs.biochem.7b01114" target="_blank">https://doi.org/10.1021/acs.biochem.7b01114</a>
dc.identifier.otherCONVID_27911135
dc.identifier.urihttps://jyx.jyu.fi/handle/123456789/57658
dc.description.abstractPhotoactive yellow proteins (PYPs) make up a diverse class of blue-light-absorbing bacterial photoreceptors. Electronic excitation of the p-coumaric acid chromophore covalently bound within PYP results in triphasic quenching kinetics; however, the molecular basis of this behavior remains unresolved. Here we explore this question by examining the excitation-wavelength dependence of the photodynamics of the PYP from Halorhodospira halophila via a combined experimental and computational approach. The fluorescence quantum yield, steady-state fluorescence emission maximum, and cryotrapping spectra are demonstrated to depend on excitation wavelength. We also compare the femtosecond photodynamics in PYP at two excitation wavelengths (435 and 475 nm) with a dual-excitation-wavelength-interleaved pump–probe technique. Multicompartment global analysis of these data demonstrates that the excited-state photochemistry of PYP depends subtly, but convincingly, on excitation wavelength with similar kinetics with distinctly different spectral features, including a shifted ground-state beach and altered stimulated emission oscillator strengths and peak positions. Three models involving multiple excited states, vibrationally enhanced barrier crossing, and inhomogeneity are proposed to interpret the observed excitation-wavelength dependence of the data. Conformational heterogeneity was identified as the most probable model, which was supported with molecular mechanics simulations that identified two levels of inhomogeneity involving the orientation of the R52 residue and different hydrogen bonding networks with the p-coumaric acid chromophore. Quantum calculations were used to confirm that these inhomogeneities track to altered spectral properties consistent with the experimental results.en
dc.languageeng
dc.language.isoeng
dc.publisherAmerican Chemical Society
dc.relation.ispartofseriesBiochemistry
dc.subject.otherPhotoactive Yellow Proteins
dc.titleExcitation-Wavelength Dependent Photocycle Initiation Dynamics Resolve Heterogeneity in the Photoactive Yellow Protein from Halorhodospira halophila
dc.typeresearch article
dc.identifier.urnURN:NBN:fi:jyu-201804061946
dc.contributor.laitosKemian laitosfi
dc.contributor.laitosDepartment of Chemistryen
dc.contributor.oppiaineFysikaalinen kemiafi
dc.contributor.oppiaineNanoscience Centerfi
dc.contributor.oppiainePhysical Chemistryen
dc.contributor.oppiaineNanoscience Centeren
dc.type.urihttp://purl.org/eprint/type/JournalArticle
dc.date.updated2018-04-06T12:15:12Z
dc.type.coarhttp://purl.org/coar/resource_type/c_2df8fbb1
dc.description.reviewstatuspeerReviewed
dc.format.pagerange1733-1747
dc.relation.issn1520-4995
dc.relation.numberinseries1
dc.relation.volume57
dc.type.versionacceptedVersion
dc.rights.copyright© 2018 American Chemical Society. This is a final draft version of an article whose final and definitive form has been published by American Chemical Society. Published in this repository with the kind permission of the publisher
dc.rights.accesslevelopenAccessfi
dc.type.publicationarticle
dc.relation.grantnumber258806
dc.relation.grantnumber304455
dc.relation.grantnumber285481
dc.relation.grantnumber290677
dc.subject.ysovalokemia
dc.subject.ysoproteiinit
dc.subject.ysofluoresenssi
jyx.subject.urihttp://www.yso.fi/onto/yso/p7201
jyx.subject.urihttp://www.yso.fi/onto/yso/p4332
jyx.subject.urihttp://www.yso.fi/onto/yso/p3265
dc.relation.doi10.1021/acs.biochem.7b01114
dc.relation.funderSuomen Akatemiafi
dc.relation.funderSuomen Akatemiafi
dc.relation.funderSuomen Akatemiafi
dc.relation.funderSuomen Akatemiafi
dc.relation.funderResearch Council of Finlanden
dc.relation.funderResearch Council of Finlanden
dc.relation.funderResearch Council of Finlanden
dc.relation.funderResearch Council of Finlanden
jyx.fundingprogramAkatemiatutkija, SAfi
jyx.fundingprogramMuut, SAfi
jyx.fundingprogramTutkijatohtori, SAfi
jyx.fundingprogramAkatemiahanke, SAfi
jyx.fundingprogramAcademy Research Fellow, AoFen
jyx.fundingprogramOthers, AoFen
jyx.fundingprogramPostdoctoral Researcher, AoFen
jyx.fundingprogramAcademy Project, AoFen
jyx.fundinginformationThis work was supported by a grant from the National Science Foundation (CHE-1413739) to both D.S.L. and W.D.H. Additionally, W.D.H. acknowledges additional support from National Science Foundation Grants MCB-1051590 and MRI-1338097. G.G. and D.M. acknowledge support from the Academy of Finland (Grants 258806, 290677, and 304455 to G.G. and Grant 285481 to D.M.).
dc.type.okmA1


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record