Excitation-Wavelength Dependent Photocycle Initiation Dynamics Resolve Heterogeneity in the Photoactive Yellow Protein from Halorhodospira halophila
Mix, L. T., Carroll, E. C., Morozov, D., Pan, J., Gordon, W. R., Philip, A., Fuzell, J., Kumauchi, M., van Stokkum, I., Groenhof, G., Hoff, W. D., & Larsen, D. S. (2018). Excitation-Wavelength Dependent Photocycle Initiation Dynamics Resolve Heterogeneity in the Photoactive Yellow Protein from Halorhodospira halophila. Biochemistry, 57(1), 1733-1747. https://doi.org/10.1021/acs.biochem.7b01114
Published in
BiochemistryAuthors
Pan, Jie |
Date
2018Copyright
© 2018 American Chemical Society. This is a final draft version of an article whose final and definitive form has been published by American Chemical Society. Published in this repository with the kind permission of the publisher
Photoactive yellow proteins (PYPs) make up a diverse class of blue-light-absorbing bacterial photoreceptors. Electronic excitation of the p-coumaric acid chromophore covalently bound within PYP results in triphasic quenching kinetics; however, the molecular basis of this behavior remains unresolved. Here we explore this question by examining the excitation-wavelength dependence of the photodynamics of the PYP from Halorhodospira halophila via a combined experimental and computational approach. The fluorescence quantum yield, steady-state fluorescence emission maximum, and cryotrapping spectra are demonstrated to depend on excitation wavelength. We also compare the femtosecond photodynamics in PYP at two excitation wavelengths (435 and 475 nm) with a dual-excitation-wavelength-interleaved pump–probe technique. Multicompartment global analysis of these data demonstrates that the excited-state photochemistry of PYP depends subtly, but convincingly, on excitation wavelength with similar kinetics with distinctly different spectral features, including a shifted ground-state beach and altered stimulated emission oscillator strengths and peak positions. Three models involving multiple excited states, vibrationally enhanced barrier crossing, and inhomogeneity are proposed to interpret the observed excitation-wavelength dependence of the data. Conformational heterogeneity was identified as the most probable model, which was supported with molecular mechanics simulations that identified two levels of inhomogeneity involving the orientation of the R52 residue and different hydrogen bonding networks with the p-coumaric acid chromophore. Quantum calculations were used to confirm that these inhomogeneities track to altered spectral properties consistent with the experimental results.
...
Publisher
American Chemical SocietyISSN Search the Publication Forum
1520-4995Publication in research information system
https://converis.jyu.fi/converis/portal/detail/Publication/27911135
Metadata
Show full item recordCollections
Related funder(s)
Research Council of FinlandFunding program(s)
Academy Research Fellow, AoF; Others, AoF; Postdoctoral Researcher, AoF; Academy Project, AoFAdditional information about funding
This work was supported by a grant from the National Science Foundation (CHE-1413739) to both D.S.L. and W.D.H. Additionally, W.D.H. acknowledges additional support from National Science Foundation Grants MCB-1051590 and MRI-1338097. G.G. and D.M. acknowledge support from the Academy of Finland (Grants 258806, 290677, and 304455 to G.G. and Grant 285481 to D.M.).Related items
Showing items with similar title or keywords.
-
Photoactive Yellow Protein Chromophore Photoisomerizes around a Single Bond if the Double Bond Is Locked
Mustalahti, Satu; Morozov, Dmitry; Luk, Hoi Ling; Pallerla, Rajanish R.; Myllyperkiö, Pasi; Pettersson, Mika; Pihko, Petri M.; Groenhof, Gerrit (American Chemical Society, 2020)Photoactivation in the Photoactive Yellow Protein, a bacterial blue light photoreceptor, proceeds via photo-isomerization of the double C=C bond in the covalently attached chromophore. Quantum chemistry calculations, ... -
Chromophore-Protein Interplay During the Phytochrome Photocycle Revealed by Step-Scan FTIR Spectroscopy
Ihalainen, Janne; Gustavsson, Emil; Schröder, Lea; Donnini, Serena; Lehtivuori, Heli; Isaksson, Linnéa; Thöing, Christian; Modi, Vaibhav; Berntsson, Oskar; Stucki-Buchli, Brigitte; Liukkonen, Alli; Häkkänen, Heikki; Kalenius, Elina; Westenhoff, Sebastian; Kottke, Tilman (American Chemical Society, 2018)Phytochrome proteins regulate many photoresponses of plants and microorganisms. Light absorption causes isomerization of the biliverdin chromophore, which triggers a series of structural changes to activate the signaling ... -
Serial Femtosecond Crystallography Reveals that Photoactivation in a Fluorescent Protein Proceeds via the Hula Twist Mechanism
Fadini, Alisia; Hutchison, Christopher D. M.; Morozov, Dmitry; Chang, Jeffrey; Maghlaoui, Karim; Perrett, Samuel; Luo, Fangjia; Kho, Jeslyn C. X.; Romei, Matthew G.; Morgan, R. Marc L.; Orr, Christian M.; Cordon-Preciado, Violeta; Fujiwara, Takaaki; Nuemket, Nipawan; Tosha, Takehiko; Tanaka, Rie; Owada, Shigeki; Tono, Kensuke; Iwata, So; Boxer, Steven G.; Groenhof, Gerrit; Nango, Eriko; van Thor, Jasper J. (American Chemical Society (ACS), 2023)Chromophore cis/trans photoisomerization is a fundamental process in chemistry and in the activation of many photosensitive proteins. A major task is understanding the effect of the protein environment on the efficiency ... -
The Low Barrier Hydrogen Bond in the Photoactive Yellow Protein : A Vacuum Artifact Absent in the Crystal and Solution
Graen, Timo; Inhester, Ludger; Clemens, Maike; Grubmüller, Helmut; Groenhof, Gerrit (American Chemical Society, 2016)There has been considerable debate on the existence of a low-barrier hydrogen bond (LBHB) in the photoactive yellow protein (PYP). The debate was initially triggered by the neutron diffraction study of Yamaguchi et ... -
Transient IR spectroscopy identifies key interactions and unravels new intermediates in the photocycle of a bacterial phytochrome
Kübel, Joachim; Chenchiliyan, Manoop; Ooi, Saik Ann; Gustavsson, Emil; Isaksson, Linnéa; Kuznetsova, Valentyna; Ihalainen, Janne A.; Westenhoff, Sebastian; Maj, Michał (Royal Society of Chemistry, 2020)Phytochromes are photosensory proteins in plants, fungi, and bacteria, which detect red- and far-red light. They undergo a transition between the resting (Pr) and photoactivated (Pfr) states. In bacterial phytochromes, the ...