Sediment diffusion method improves wastewater nitrogen removal in the receiving lake sediments
Aalto, S. L., Saarenheimo, J., Ropponen, J., Juntunen, J., Rissanen, A., & Tiirola, M. (2018). Sediment diffusion method improves wastewater nitrogen removal in the receiving lake sediments. Water Research, 138, 312-322. https://doi.org/10.1016/j.watres.2018.03.068
Published in
Water ResearchAuthors
Date
2018Copyright
© 2018 The Authors. Published by Elsevier Ltd. This is an open access article distributed under the terms of the Creative Commons License.
Sediment microbes have a great potential to transform reactive N to harmless N2, thus decreasing wastewater nitrogen load into aquatic ecosystems. Here, we examined if spatial allocation of the wastewater discharge by a specially constructed sediment diffuser pipe system enhanced the microbial nitrate reduction processes. Full-scale experiments were set on two Finnish lake sites, Keuruu and Petäjävesi, and effects on the nitrate removal processes were studied using the stable isotope pairing technique. All nitrate reduction rates followed nitrate concentrations, being highest at the wastewater-influenced sampling points. Complete denitrification with N2 as an end-product was the main nitrate reduction process, indicating that the high nitrate and organic matter concentrations of wastewater did not promote nitrous oxide (N2O) production (truncated denitrification) or ammonification (dissimilatory nitrate reduction to ammonium; DNRA). Using 3D simulation, we demonstrated that the sediment diffusion method enhanced the contact time and amount of wastewater near the sediment surface especially in spring and in autumn, altering organic matter concentration and oxygen levels, and increasing the denitrification capacity of the sediment. We estimated that natural denitrification potentially removed 3–10% of discharged wastewater nitrate in the 33 ha study area of Keuruu, and the sediment diffusion method increased this areal denitrification capacity on average 45%. Overall, our results indicate that sediment diffusion method can supplement wastewater treatment plant (WWTP) nitrate removal without enhancing alternative harmful processes.
...
Publisher
IWA PublishingISSN Search the Publication Forum
0043-1354Keywords
Publication in research information system
https://converis.jyu.fi/converis/portal/detail/Publication/27975959
Metadata
Show full item recordCollections
Related funder(s)
European CommissionFunding program(s)
FP7 (EU's 7th Framework Programme)
The content of the publication reflects only the author’s view. The funder is not responsible for any use that may be made of the information it contains.
Additional information about funding
The work was supported by the funding of Academy of Finland project 260797, European Union project LIFE12 ENV/FI/597 (N-SINK) and European Research Council (ERC) CoG project 615146 for MT, and Academy of Finland projects 310302 for SLA and 286642 for AJR.License
Except where otherwise noted, this item's license is described as © 2018 The Authors. Published by Elsevier Ltd. This is an open access article distributed under the terms of the Creative Commons License.
Related items
Showing items with similar title or keywords.
-
Denitrification and dissimilatory nitrate reduction to ammonium in a lake receiving wastewater effluent
Hasari, Miikka (2015)Denitrifikaatio ja DNRA (dissimilatory nitrate reduction to ammonium) ovat nitraattia pelkistäviä prosesseja, jotka yleensä esiintyvät hapettomissa olosuhteissa, kuten järvien sedimenteissä ja alusvesissä. Denitrifikaatiossa ... -
Resistant ammonia-oxidizing archaea endure, but adapting ammonia-oxidizing bacteria thrive in boreal lake sediments receiving nutrient-rich effluents
Aalto, Sanni L.; Saarenheimo, Jatta; Mikkonen, Anu; Rissanen, Antti J.; Tiirola, Marja (Wiley-Blackwell Publishing Ltd., 2018)Climate change along with anthropogenic activities changes biogeochemical conditions in lake ecosystems, modifying the sediment microbial communities. Wastewater effluents introduce nutrients and organic material but also ... -
Occurrence of pharmaceuticals in municipal wastewater treatment plants and receiving surface waters in Central and Southern Finland
Lindholm-Lehto, Petra (University of Jyväskylä, 2016)The presence of five selected pharmaceuticals, four anti-inflammatory drugs, diclofenac, ibuprofen, ketoprofen, naproxen, and an antiepileptic drug carbamazepine, was determined at four municipal wastewater treatment plants ... -
Nitrate removal microbiology in woodchip bioreactors : a case-study with full-scale bioreactors treating aquaculture effluents
Aalto, Sanni L.; Suurnäkki, Suvi; von Ahnen, Mathis; Siljanen, Henri M. P.; Pedersen, Per Bovbjerg; Tiirola, Marja (Elsevier, 2020)Woodchip bioreactors are viable low-cost nitrate (NO3−) removal applications for treating agricultural and aquaculture discharges. The active microbial biofilms growing on woodchips are conducting nitrogen (N) removal, ... -
Autochthonous organic matter promotes DNRA and suppresses N2O production in sediments of the coastal Baltic Sea
Aalto, Sanni L.; Asmala, Eero; Jilbert, Tom; Hietanen, Susanna (Elsevier, 2021)Coastal environments are nitrogen (N) removal hot spots, which regulate the amount of land-derived N reaching the open sea. However, mixing between freshwater and seawater creates gradients of inorganic N and bioavailable ...