Finite-time Lyapunov dimension and hidden attractor of the Rabinovich system
Kuznetsov, N., Leonov, G. A., Mokaev, T. N., Prasad, A., & Shrimali, M. D. (2018). Finite-time Lyapunov dimension and hidden attractor of the Rabinovich system. Nonlinear Dynamics, 92(2), 267-285. https://doi.org/10.1007/s11071-018-4054-z
Published in
Nonlinear DynamicsDate
2018Copyright
© the Authors, 2018. This is an open access article distributed under the terms of the Creative Commons License.
The Rabinovich system, describing the process of interaction between waves in plasma, is considered. It is shown that the Rabinovich system can exhibit a hidden attractor in the case of multistability as well as a classical self-excited attractor. The hidden attractor in this system can be localized by analytical/numerical methods based on the continuation and perpetual points. The concept of finite-time Lyapunov dimension is developed for numerical study of the dimension of attractors. A conjecture on the Lyapunov dimension of self-excited attractors and the notion of exact Lyapunov dimension are discussed. A comparative survey on the computation of the finite-time Lyapunov exponents and dimension by different algorithms is presented. An adaptive algorithm for studying the dynamics of the finite-time Lyapunov dimension is suggested. Various estimates of the finite-time Lyapunov dimension for the hidden attractor and hidden transient chaotic set in the case of multistability are given.
...
Publisher
SpringerISSN Search the Publication Forum
0924-090XKeywords
Publication in research information system
https://converis.jyu.fi/converis/portal/detail/Publication/27887304
Metadata
Show full item recordCollections
License
Except where otherwise noted, this item's license is described as © the Authors, 2018. This is an open access article distributed under the terms of the Creative Commons License.
Related items
Showing items with similar title or keywords.
-
Localization and dimension estimation of attractors in the Glukhovsky-Dolzhansky system
Mokaev, Timur (University of Jyväskylä, 2016) -
The Lorenz system : hidden boundary of practical stability and the Lyapunov dimension
Kuznetsov, N. V.; Mokaev, T. N.; Kuznetsova, O. A.; Kudryashova, E. V. (Springer, 2020)On the example of the famous Lorenz system, the difficulties and opportunities of reliable numerical analysis of chaotic dynamical systems are discussed in this article. For the Lorenz system, the boundaries of global ... -
On lower-bound estimates of the Lyapunov dimension and topological entropy for the Rossler systems
Kuznetsov, N. V.; Mokaev, T. N.; Kudryashova, E. V.; Kuznetsova, O. A.; Danca, M.-F. (IFAC; Elsevier, 2019)In this paper, on the example of the Rössler systems, the application of the Pyragas time-delay feedback control technique for verification of Eden’s conjecture on the maximum of local Lyapunov dimension, and for the ... -
Numerical analysis of dynamical systems : unstable periodic orbits, hidden transient chaotic sets, hidden attractors, and finite-time Lyapunov dimension
Kuznetsov, Nikolay; Mokaev, Timur (IOP Publishing, 2019)In this article, on the example of the known low-order dynamical models, namely Lorenz, Rössler and Vallis systems, the difficulties of reliable numerical analysis of chaotic dynamical systems are discussed. For the Lorenz ... -
Lyapunov dimension formula for the global attractor of the Lorenz system
Leonov, G. A.; Kuznetsov, Nikolay; Korzhemanova, N. A.; Kusakin, D. V. (Elsevier B.V.; Peking University, 2016)The exact Lyapunov dimension formula for the Lorenz system for a positive measure set of parameters, including classical values, was analytically obtained first by G.A. Leonov in 2002. Leonov used the construction technique ...