A GEM-TPC in twin configuration for the Super-FRS tracking of heavy ions at FAIR
García, F., Caesar, C., Grahn, T., Heggen, H., Hoffmann, J., Jokinen, A., Kaya, C., Kunkel, J., Kurz, N., Nociforo, C., Prochazka, A., Rinta-Antila, S., Risch, H., Rusanov, I., Schmidt, C.J., Simon, H., Simons, C., Turpeinen, R., Voss, B., . . . Winkler, M. (2018). A GEM-TPC in twin configuration for the Super-FRS tracking of heavy ions at FAIR. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 884, 18-24. https://doi.org/10.1016/j.nima.2017.11.088
Julkaistu sarjassa
Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated EquipmentPäivämäärä
2018Tekijänoikeudet
© 2018 Elsevier Ltd. This is a final draft version of an article whose final and definitive form has been published by Elsevier. Published in this repository with the kind permission of the publisher.
The GEM-TPC
[1]
described herein will be part of the standard beam-diagnostics equipment of the Super-FRS
[2]
. This chamber
will provide tracking information for particle identification at rates up to 1 MHz on an event-by-event basis. The key
requirements of operation for these chambers are: close to 100% tracking efficiency under conditions of high counting rate,
spatial resolution below 1 mm and a superb large dynamic range covering projectiles from Z=1 up to Z=92. The current
prototype consists of two GEM-TPCs inside a single vessel, which are operating independently and have electrical drift fields
in opposite directions. The
twin configuration
is done by flipping one of the GEM-TPCs on the middle plane with respect to the
second one. In order to put this development in context, the evolution of previous prototypes will be described and its
performances discussed. Finally, this chamber was tested at the University of Jyväskylä accelerator with proton projectiles and
at GSI with Uranium, Xenon, fragments and Carbon beams. The results obtained have shown a position resolution between 120
to 300 μm at moderate counting rate under conditions of full tracking efficiency.
...
Julkaisija
Elsevier BVISSN Hae Julkaisufoorumista
0168-9002Asiasanat
Julkaisu tutkimustietojärjestelmässä
https://converis.jyu.fi/converis/portal/detail/Publication/27415276
Metadata
Näytä kaikki kuvailutiedotKokoelmat
Samankaltainen aineisto
Näytetään aineistoja, joilla on samankaltainen nimeke tai asiasanat.
-
Jet shape modification in Pb-Pb collisions at √S[sub]N[sub]N= 2.76 TeV using two-particle correlations
Vargyas, Márton (University of Jyväskylä, 2018)This thesis focuses on two separate topics. The first topic concerns the upgrade of the Time Projection Chamber (TPC) detector of the ALICE experiment. The upgrade will take place during the second Long Shutdown (2019-2020). ... -
The ALICE Transition Radiation Detector: Construction, operation, and performance
ALICE Collaboration (Elsevier B.V., 2018)The Transition Radiation Detector (TRD) was designed and built to enhance the capabilities of the ALICE detector at the Large Hadron Collider (LHC). While aimed at providing electron identification and triggering, the TRD ... -
The effect of cavity tuning on oxygen beam currents of an A-ECR type 14 GHz electron cyclotron resonance ion source
Tarvainen, Olli; Orpana, J.; Kronholm, Risto; Kalvas, Taneli; Laulainen, Janne; Koivisto, Hannu; Izotov, I.; Skalyga, V.; Toivanen, V. (American Institute of Physics, 2016)The efficiency of the microwave-plasma coupling plays a significant role in the production of highly charged ion beams with electron cyclotron resonance ion sources (ECRISs). The coupling properties are affected by the ... -
Performance study of a 3×1×1 m3 dual phase liquid Argon Time Projection Chamber exposed to cosmic rays
WA105 collaboration (IOP Publishing, 2021)We report the results of the analyses of the cosmic ray data collected with a 4 tonne (3×1×1 m3) active mass (volume) Liquid Argon Time-Projection Chamber (TPC) operated in a dual-phase mode. We present a detailed study ... -
A 4 tonne demonstrator for large-scale dual-phase liquid argon time projection chambers
Aimard, B.; Alt, Ch.; Asaadi, J.; Auger, M.; Aushev, V.; Autiero, D.; Badoi, M.M.; Balaceanu, A.; Balik, G.; Balleyguier, L.; Bechetoille, E.; Belver, D.; Blebea-Apostu, A.M.; Bolognesi, S.; Bordoni, S.; Bourgeois, N.; Bourguille, B.; Bremer, J.; Brown, G.; Brunetti, G.; Brunetti, L.; Caiulo, D.; Calin, M.; Calvo, E.; Campanelli, M.; Cankocak, K.; Cantini, C.; Carlus, B.; Cautisanu, B.M.; Chalifour, M.; Chappuis, A.; Charitonidis, N.; Chatterjee, A.; Chiriacescu, A.; Chiu, P.; Conforti, S.; Cotte, P.; Crivelli, P.; Cuesta, C.; Dawson, J.; De Bonis, I.; De La Taille, C.; Delbart, A.; Desforge, D.; Luise, S. Di; Dimitru, B.S.; Doizon, F.; Drancourt, C.; Duchesneau, D.; Dulucq, F.; Dumarchez, J.; Duval, F.; Emery, S.; Ereditato, A.; Esanu, T.; Falcone, A.; Fusshoeller, K.; Gallego-Ros, A.; Galymov, V.; Geffroy, N.; Gendotti, A.; Gherghel-Lascu, M.; Giganti, C.; Gil-Botella, I.; Girerd, C.; Gomoiu, M.C.; Gorodetzky, P.; Hamada, E.; Hanni, R.; Hasegawa, T.; Holin, A.; Horikawa, S.; Ikeno, M.; Jiménez, S.; Jipa, A.; Karolak, M.; Karyotakis, Y.; Kasai, S.; Kasami, K.; Kishishita, T.; Kreslo, I.; Kryn, D.; Lastoria, C.; Lazanu, I.; Lehmann-Miotto, G.; Lira, N.; Loo, Kai; Lorca, D.; Lutz, P.; Lux, T.; Maalampi, Jukka; Mair, G.; Maki, M.; Manenti, L.; Margineanu, R.M.; Marteau, J.; Martin-Chassard, G.; Mathez, H.; Mazzucato, E.; Misitano, G.; Mitrica, B.; Mladenov, D.; Bueno, L. Molina; Martínez, C. Moreno; Mols, J.P.; Mosu, T.S.; Mu, W.; Munteanu, A.; Murphy, S.; Nakayoshi, K.; Narita, S.; Navas-Nicolás, D.; Negishi, K.; Nessi, M.; Niculescu-Oglinzanu, M.; Nita, L.; Noto, F.; Noury, A.; Onishchuk, Y.; Palomares, C.; Parvu, M.; Patzak, T.; Pénichot, Y.; Pennacchio, E.; Periale, L.; Pessard, H.; Pietropaolo, F.; Piret, Y.; Popov, B.; Pugnere, D.; Radics, B.; Redondo, D.; Regenfus, C.; Remoto, A.; Resnati, F.; Rigaut, Y.A.; Ristea, C.; Rubbia, A.; Saftoiu, A.; Sakashita, K.; Sanchez, F.; Santos, C.; Scarpelli, A.; Schloesser, C.; Lavina, L. Scotto; Sendai, K.; Sergiampietri, F.; Shahsavarani, S.; Shoji, M.; Sinclair, J.; Soto-Oton, J.; Stanca, D.L.; Stefan, D.; Stroescu, P.; Sulej, R.; Tanaka, M.; Toboaru, V.; Tonazzo, A.; Tromeur, W.; Trzaska, Wladyslaw; Uchida, T.; Vannucci, F.; Vasseur, G.; Verdugo, A.; Viant, T.; Vihonen, Sampsa; Vilalte, S.; Weber, M.; Wu, S.; Yu, J.; Zambelli, L.; Zito, M. (Institute of Physics Publishing Ltd., 2018)A 10 kilo-tonne dual-phase liquid argon TPC is one of the detector options considered for the Deep Underground Neutrino Experiment (DUNE). The detector technology relies on amplification of the ionisation charge in ...
Ellei toisin mainittu, julkisesti saatavilla olevia JYX-metatietoja (poislukien tiivistelmät) saa vapaasti uudelleenkäyttää CC0-lisenssillä.