dc.contributor.author | Costin, Andrei | |
dc.contributor.author | Zarras, Apostolis | |
dc.contributor.author | Francillon, Aurélien | |
dc.contributor.editor | De Capitani di Vimercati, Sabrina | |
dc.contributor.editor | Martinelli, Fabio | |
dc.date.accessioned | 2017-11-28T07:29:27Z | |
dc.date.available | 2018-05-04T21:45:05Z | |
dc.date.issued | 2017 | |
dc.identifier.citation | Costin, A., Zarras, A., & Francillon, A. (2017). Towards Automated Classification of Firmware Images and Identification of Embedded Devices. In S. De Capitani di Vimercati, & F. Martinelli (Eds.), <i>ICT Systems Security and Privacy Protection : 32nd IFIP TC 11 International Conference, SEC 2017, Rome, Italy, May 29-31, 2017, Proceedings</i> (pp. 233-247). Springer. IFIP Advances in Information and Communication Technology, 502. <a href="https://doi.org/10.1007/978-3-319-58469-0_16" target="_blank">https://doi.org/10.1007/978-3-319-58469-0_16</a> | |
dc.identifier.other | CONVID_27070681 | |
dc.identifier.uri | https://jyx.jyu.fi/handle/123456789/56025 | |
dc.description.abstract | Embedded systems, as opposed to traditional computers,
bring an incredible diversity. The number of devices manufactured is constantly
increasing and each has a dedicated software, commonly known
as firmware. Full firmware images are often delivered as multiple releases,
correcting bugs and vulnerabilities, or adding new features. Unfortunately,
there is no centralized or standardized firmware distribution
mechanism. It is therefore difficult to track which vendor or device a firmware
package belongs to, or to identify which firmware version is used in
deployed embedded devices. At the same time, discovering devices that
run vulnerable firmware packages on public and private networks is crucial
to the security of those networks. In this paper, we address these
problems with two different, yet complementary approaches: firmware
classification and embedded web interface fingerprinting. We use supervised
Machine Learning on a database subset of real world firmware files.
For this, we first tell apart firmware images from other kind of files and
then we classify firmware images per vendor or device type. Next, we
fingerprint embedded web interfaces of both physical and emulated devices.
This allows recognition of web-enabled devices connected to the
network. In some cases, this complementary approach allows to logically
link web-enabled online devices with the corresponding firmware package
that is running on the devices. Finally, we test the firmware classification
approach on 215 images with an accuracy of 93.5%, and the device
fingerprinting approach on 31 web interfaces with 89.4% accuracy. | |
dc.format.extent | 586 | |
dc.language.iso | eng | |
dc.publisher | Springer | |
dc.relation.ispartof | ICT Systems Security and Privacy Protection : 32nd IFIP TC 11 International Conference, SEC 2017, Rome, Italy, May 29-31, 2017, Proceedings | |
dc.relation.ispartofseries | IFIP Advances in Information and Communication Technology | |
dc.subject.other | sulautettu tietotekniikka | |
dc.subject.other | tietoturva | |
dc.subject.other | haavoittuvuus | |
dc.subject.other | koneoppiminen | |
dc.subject.other | ubiquitous computing | |
dc.subject.other | data security | |
dc.subject.other | vulnerability | |
dc.subject.other | machine learning | |
dc.title | Towards Automated Classification of Firmware Images and Identification of Embedded Devices | |
dc.type | conference paper | |
dc.identifier.urn | URN:NBN:fi:jyu-201711224329 | |
dc.contributor.laitos | Informaatioteknologian tiedekunta | fi |
dc.contributor.laitos | Faculty of Information Technology | en |
dc.contributor.oppiaine | Tietotekniikka | fi |
dc.contributor.oppiaine | Mathematical Information Technology | en |
dc.type.uri | http://purl.org/eprint/type/ConferencePaper | |
dc.date.updated | 2017-11-22T10:15:08Z | |
dc.relation.isbn | 978-3-319-58468-3 | |
dc.type.coar | http://purl.org/coar/resource_type/c_5794 | |
dc.description.reviewstatus | peerReviewed | |
dc.format.pagerange | 233-247 | |
dc.relation.issn | 1868-4238 | |
dc.type.version | acceptedVersion | |
dc.rights.copyright | © IFIP International Federation for Information Processing 2017. This is a final draft version of an article whose final and definitive form has been published by Springer. Published in this repository with the kind permission of the publisher. | |
dc.rights.accesslevel | openAccess | fi |
dc.type.publication | conferenceObject | |
dc.relation.conference | IFIP International Conference on ICT Systems Security and Privacy Protection | |
dc.subject.yso | sulautettu tietotekniikka | |
dc.subject.yso | tietoturva | |
dc.subject.yso | haavoittuvuus | |
dc.subject.yso | koneoppiminen | |
jyx.subject.uri | http://www.yso.fi/onto/yso/p5461 | |
jyx.subject.uri | http://www.yso.fi/onto/yso/p5479 | |
jyx.subject.uri | http://www.yso.fi/onto/yso/p25011 | |
jyx.subject.uri | http://www.yso.fi/onto/yso/p21846 | |
dc.relation.doi | 10.1007/978-3-319-58469-0_16 | |
dc.type.okm | A4 | |