Automatic identification of architecture and endianness using binary file contents
Tekijät
Päivämäärä
2019Tekijänoikeudet
Julkaisu on tekijänoikeussäännösten alainen. Teosta voi lukea ja tulostaa henkilökohtaista käyttöä varten. Käyttö kaupallisiin tarkoituksiin on kielletty.
This thesis explores how architecture and endianness of executable code can be identified using binary file contents, as falsely identifying the architecture caused about 10% of failures of firmware analysis in a recent study by Costin et al. (2014) . A literature review was performed to identify the current state-of-the-art methods and how they could be improved in terms of algorithms, performance, data sets, and support tools. The thorough review identified methods presented by Clemens (2015) and De Nicolao et al. (2018) as the state-of-the-art and found that they had good results. However, these methods were found lacking essential tools to acquire or build the data sets as well as requiring more comprehensive comparison of classifier performance on full binaries. An experimental evaluation was performed to test classifier performance on different situations. For example, when training and testing classifiers with only code sections from executable files, all the classifiers performed equally well achieving over 98% accuracy. On samples with very small code sections 3-nearest neighbors and SVM had the best performance achieving 90% accuracy at 128 bytes. At the same time, random forest classifier performed the best classifying full binaries when trained with code sections at 90% accuracy and 99.2% when trained using full binaries.
...
Julkaisuun liittyvä(t) tutkimusaineisto(t)
https://github.com/kairis/isadetecthttps://etsin.fairdata.fi/dataset/80fa69af-addb-4f9a-b45c-c16011bae366
Metadata
Näytä kaikki kuvailutiedotKokoelmat
- Pro gradu -tutkielmat [29560]
Samankaltainen aineisto
Näytetään aineistoja, joilla on samankaltainen nimeke tai asiasanat.
-
Automatic image‐based identification and biomass estimation of invertebrates
Ärje, Johanna; Melvad, Claus; Jeppesen, Mads Rosenhøj; Madsen, Sigurd Agerskov; Raitoharju, Jenni; Rasmussen, Maria Strandgård; Iosifidis, Alexandros; Tirronen, Ville; Gabbouj, Moncef; Meissner, Kristian; Høye, Toke Thomas (Wiley, 2020)Understanding how biological communities respond to environmental changes is a key challenge in ecology and ecosystem management. The apparent decline of insect populations necessitates more biomonitoring but the time-consuming ... -
Towards Automated Classification of Firmware Images and Identification of Embedded Devices
Costin, Andrei; Zarras, Apostolis; Francillon, Aurélien (Springer, 2017)Embedded systems, as opposed to traditional computers, bring an incredible diversity. The number of devices manufactured is constantly increasing and each has a dedicated software, commonly known as firmware. Full ... -
Minimal learning machine in hyperspectral imaging classification
Hakola, Anna-Maria; Pölönen, Ilkka (SPIE, 2020)A hyperspectral (HS) image is typically a stack of frames, where each frame represents the intensity of a different wavelength of light. Each spatial pixel has a spectrum. In the classification of the HS image, each spectrum ... -
Automatic sleep scoring : a deep learning architecture for multi-modality time series
Yan, Rui; Li, Fan; Zhou, Dong Dong; Ristaniemi, Tapani; Cong, Fengyu (Elsevier, 2021)Background: Sleep scoring is an essential but time-consuming process, and therefore automatic sleep scoring is crucial and urgent to help address the growing unmet needs for sleep research. This ... -
Security of firmware update mechanisms within SOHO routers
Kolehmainen, Santtu (2019)Purpose of this thesis was to analyze the state of firmware update security within SOHO (Small Office/Home Office) routers as anecdotal claims of insecure routers are common and firmware updates are critical to the overall ...
Ellei toisin mainittu, julkisesti saatavilla olevia JYX-metatietoja (poislukien tiivistelmät) saa vapaasti uudelleenkäyttää CC0-lisenssillä.