dc.contributor.author | Chugh, Tinkle | |
dc.contributor.author | Sindhya, Karthik | |
dc.contributor.author | Miettinen, Kaisa | |
dc.contributor.author | Jin, Yaochu | |
dc.contributor.author | Kratky, Tomas | |
dc.contributor.author | Makkonen, Pekka | |
dc.date.accessioned | 2017-08-09T10:35:41Z | |
dc.date.available | 2017-08-09T10:35:41Z | |
dc.date.issued | 2017 | |
dc.identifier.citation | Chugh, T., Sindhya, K., Miettinen, K., Jin, Y., Kratky, T., & Makkonen, P. (2017). Surrogate-assisted evolutionary multiobjective shape optimization of an air intake ventilation system. In <i>2017 IEEE Congress on Evolutionary Computation (CEC)</i> (pp. 1541-1548). IEEE. <a href="https://doi.org/10.1109/CEC.2017.7969486" target="_blank">https://doi.org/10.1109/CEC.2017.7969486</a> | |
dc.identifier.other | CONVID_27113047 | |
dc.identifier.other | TUTKAID_74406 | |
dc.identifier.uri | https://jyx.jyu.fi/handle/123456789/55055 | |
dc.description.abstract | We tackle three different challenges in solving a real-world industrial problem: formulating the optimization problem, connecting different simulation tools and dealing with computationally expensive objective functions. The problem to be optimized is an air intake ventilation system of a tractor and consists of three computationally expensive objective functions. We describe the modeling of the system and its numerical evaluation with a commercial software. To obtain solutions in few function evaluations, a recently proposed surrogate-assisted evolutionary algorithm K-RVEA is applied. The diameters of four different outlets of the ventilation system are considered as decision variables. From the set of nondominated solutions generated by K-RVEA, a decision maker having substance knowledge selected the final one based on his preferences. The final selected solution has better objective function values compared to the baseline solution of the initial design. A comparison of solutions with K-RVEA and RVEA (which does not use surrogates) is also performed to show the potential of using surrogates. | |
dc.language.iso | eng | |
dc.publisher | IEEE | |
dc.relation.ispartof | 2017 IEEE Congress on Evolutionary Computation (CEC) | |
dc.subject.other | optimization | |
dc.subject.other | resistance | |
dc.subject.other | numerical models | |
dc.subject.other | software | |
dc.title | Surrogate-assisted evolutionary multiobjective shape optimization of an air intake ventilation system | |
dc.type | conferenceObject | |
dc.identifier.urn | URN:NBN:fi:jyu-201707243355 | |
dc.contributor.laitos | Informaatioteknologian tiedekunta | fi |
dc.contributor.laitos | Faculty of Information Technology | en |
dc.contributor.oppiaine | Tietotekniikka | fi |
dc.contributor.oppiaine | Mathematical Information Technology | en |
dc.type.uri | http://purl.org/eprint/type/ConferencePaper | |
dc.date.updated | 2017-07-24T12:15:05Z | |
dc.relation.isbn | 978-1-5090-4601-0 | |
dc.type.coar | http://purl.org/coar/resource_type/c_5794 | |
dc.description.reviewstatus | peerReviewed | |
dc.format.pagerange | 1541-1548 | |
dc.type.version | acceptedVersion | |
dc.rights.copyright | © 2017 IEEE. This is a final draft version of an article whose final and definitive form has been published by IEEE. Published in this repository with the kind permission of the publisher. | |
dc.rights.accesslevel | openAccess | fi |
dc.relation.conference | IEEE Congress on Evolutionary Computation | |
dc.subject.yso | lineaarinen optimointi | |
dc.subject.yso | ilmanvaihto | |
dc.subject.yso | hydraulijärjestelmät | |
jyx.subject.uri | http://www.yso.fi/onto/yso/p15483 | |
jyx.subject.uri | http://www.yso.fi/onto/yso/p5431 | |
jyx.subject.uri | http://www.yso.fi/onto/yso/p25132 | |
dc.relation.doi | 10.1109/CEC.2017.7969486 | |
dc.type.okm | A4 | |