Näytä suppeat kuvailutiedot

dc.contributor.authorKhoromskij, Boris
dc.contributor.authorRepin, Sergey
dc.date.accessioned2017-07-31T09:48:27Z
dc.date.available2018-06-17T21:35:27Z
dc.date.issued2017
dc.identifier.citationKhoromskij, B., & Repin, S. (2017). Rank Structured Approximation Method for Quasi-Periodic Elliptic Problems. <i>Computational Methods in Applied Mathematics</i>, <i>17</i>(3), 457-477. <a href="https://doi.org/10.1515/cmam-2017-0014" target="_blank">https://doi.org/10.1515/cmam-2017-0014</a>
dc.identifier.otherCONVID_27081071
dc.identifier.urihttps://jyx.jyu.fi/handle/123456789/54949
dc.description.abstractWe consider an iteration method for solving an elliptic type boundary value problem Au=f, where a positive definite operator A is generated by a quasi-periodic structure with rapidly changing coefficients (a typical period is characterized by a small parameter ϵ). The method is based on using a simpler operator A0 (inversion of A0 is much simpler than inversion of A), which can be viewed as a preconditioner for A. We prove contraction of the iteration method and establish explicit estimates of the contraction factor q. Certainly the value of q depends on the difference between A and A0. For typical quasi-periodic structures, we establish simple relations that suggest an optimal A0 (in a selected set of “simple” structures) and compute the corresponding contraction factor. Further, this allows us to deduce fully computable two-sided a posteriori estimates able to control numerical solutions on any iteration. The method is especially efficient if the coefficients of A admit low-rank representations and if algebraic operations are performed in tensor structured formats. Under moderate assumptions the storage and solution complexity of our approach depends only weakly (merely linear-logarithmically) on the frequency parameter 1/ϵ.
dc.language.isoeng
dc.publisherde Gruyter
dc.relation.ispartofseriesComputational Methods in Applied Mathematics
dc.subject.otherelliptic problems with periodic and quasi-periodic coefficients
dc.subject.otherprecondition methods
dc.subject.othertensor type methods
dc.subject.otherguaranteed error bounds
dc.titleRank Structured Approximation Method for Quasi-Periodic Elliptic Problems
dc.typeresearch article
dc.identifier.urnURN:NBN:fi:jyu-201707183314
dc.contributor.laitosInformaatioteknologian tiedekuntafi
dc.contributor.laitosFaculty of Information Technologyen
dc.contributor.oppiaineTietotekniikkafi
dc.contributor.oppiaineMathematical Information Technologyen
dc.type.urihttp://purl.org/eprint/type/JournalArticle
dc.date.updated2017-07-18T12:15:05Z
dc.type.coarhttp://purl.org/coar/resource_type/c_2df8fbb1
dc.description.reviewstatuspeerReviewed
dc.format.pagerange457-477
dc.relation.issn1609-4840
dc.relation.numberinseries3
dc.relation.volume17
dc.type.versionpublishedVersion
dc.rights.copyright© 2017 Walter de Gruyter GmbH, Berlin/Boston. Published in this repository with the kind permission of the publisher.
dc.rights.accesslevelopenAccessfi
dc.type.publicationarticle
dc.relation.doi10.1515/cmam-2017-0014
dc.type.okmA1


Aineistoon kuuluvat tiedostot

Thumbnail

Aineisto kuuluu seuraaviin kokoelmiin

Näytä suppeat kuvailutiedot