Feature Extractors for Describing Vehicle Routing Problem Instances
Rasku, J., Kärkkäinen, T., & Musliu, N. (2016). Feature Extractors for Describing Vehicle Routing Problem Instances. In B. H. A. A. Qazi, & S. Ravizza (Eds.), SCOR 2016 : Proceedings of the 5th Student Conference on Operational Research (pp. 7:1-7:13). Dagstuhl Publishing. OASICS, 50. https://doi.org/10.4230/OASIcs.SCOR.2016.7
Julkaistu sarjassa
OASICSPäivämäärä
2016Tekijänoikeudet
© 2016 the Authors. Licensed under Creative Commons Attribution License.
The vehicle routing problem comes in varied forms. In addition to usual variants with diverse constraints and specialized objectives, the problem instances themselves – even from a single shared source - can be distinctly different. Heuristic, metaheuristic, and hybrid algorithms that are typically used to solve these problems are sensitive to this variation and can exhibit erratic performance when applied on new, previously unseen instances. To mitigate this, and to improve their applicability, algorithm developers often choose to expose parameters that allow customization of the algorithm behavior. Unfortunately, finding a good set of values for these parameters can be a tedious task that requires extensive experimentation and experience. By deriving descriptors for the problem classes and instances, one would be able to apply learning and adaptive methods that, when taught, can effectively exploit the idiosyncrasies of a problem instance. Furthermore, these methods can generalize from previously learnt knowledge by inferring suitable values for these parameters. As a necessary intermediate step towards this goal, we propose a set of feature extractors for vehicle routing problems. The descriptors include dimensionality of the problem; statistical descriptors of distances, demands, etc.; clusterability of the vertex locations; and measures derived using fitness landscape analysis. We show the relevancy of these features by performing clustering on classical problem instances and instance-specific algorithm configuration of vehicle routing metaheuristics.
...
Julkaisija
Dagstuhl PublishingEmojulkaisun ISBN
978-3-95977-004-0Konferenssi
Student Conference on Operational ResearchKuuluu julkaisuun
SCOR 2016 : Proceedings of the 5th Student Conference on Operational ResearchISSN Hae Julkaisufoorumista
2190-6807Asiasanat
Alkuperäislähde
http://drops.dagstuhl.de/opus/volltexte/2016/6519/pdf/OASIcs-SCOR-2016-7.pdfJulkaisu tutkimustietojärjestelmässä
https://converis.jyu.fi/converis/portal/detail/Publication/26490504
Metadata
Näytä kaikki kuvailutiedotKokoelmat
Lisenssi
Ellei muuten mainita, aineiston lisenssi on © 2016 the Authors. Licensed under Creative Commons Attribution License.
Samankaltainen aineisto
Näytetään aineistoja, joilla on samankaltainen nimeke tai asiasanat.
-
On automatic algorithm configuration of vehicle routing problem solvers
Rasku, Jussi; Musliu, Nysret; Kärkkäinen, Tommi (Springer, 2019)Many of the algorithms for solving vehicle routing problems expose parameters that strongly influence the quality of obtained solutions and the performance of the algorithm. Finding good values for these parameters is a ... -
Application of a Knowledge Discovery Process to Study Instances of Capacitated Vehicle Routing Problems
Kärkkäinen, Tommi; Rasku, Jussi (Springer, 2020)Vehicle Routing Problems (VRP) are computationally challenging, constrained optimization problems, which have central role in logistics management. Usually different solvers are being developed and applied for different ... -
Automatic surrogate modelling technique selection based on features of optimization problems
Saini, Bhupinder Singh; Lopez-Ibanez, Manuel; Miettinen, Kaisa (ACM, 2019)A typical scenario when solving industrial single or multiobjective optimization problems is that no explicit formulation of the problem is available. Instead, a dataset containing vectors of decision variables together ... -
Unsupervised feature analysis of real and synthetic knee X-ray images
Tuomikoski, Joonas (2023)Generatiiviset mallit ovat parantuneet valtavasti viime vuosina, ja tämä on luonut tarpeen automaattisille validointitekniikoille synteettiselle datalle. Tässä pro gradu -työssä testatiin menetelmää synteettisten kuvien ... -
MATLAB codes implementing the generalized cross-wavelet transform (GXWT) algorithm described in the paper "Analyzing multidimensional movement interaction with generalized cross-wavelet transform" (Toiviainen & Hartmann, 2021)
Hartman, Martin; Toiviainen, Petri (University of Jyväskylä, 2021-04-13)MATLAB codes implementing the generalized cross-wavelet transform (GXWT) algorithm described in the paper "Analyzing multidimensional movement interaction with generalized cross-wavelet transform" (Toiviainen & Hartmann, ...
Ellei toisin mainittu, julkisesti saatavilla olevia JYX-metatietoja (poislukien tiivistelmät) saa vapaasti uudelleenkäyttää CC0-lisenssillä.