Impact of chaotic dynamics on the performance of metaheuristic optimization algorithms : An experimental analysis
Zelinka, I., Diep, Q. B., Snášel, V., Das, S., Innocenti, G., Tesi, A., Schoen, F., & Kuznetsov, N. V. (2022). Impact of chaotic dynamics on the performance of metaheuristic optimization algorithms : An experimental analysis. Information Sciences, 587, 692-719. https://doi.org/10.1016/j.ins.2021.10.076
Julkaistu sarjassa
Information SciencesTekijät
Päivämäärä
2022Oppiaine
Laskennallinen tiedeTietotekniikkaComputing, Information Technology and MathematicsComputational ScienceMathematical Information TechnologyComputing, Information Technology and MathematicsTekijänoikeudet
© 2021 The Author(s). Published by Elsevier Inc.
Random mechanisms including mutations are an internal part of evolutionary algorithms, which are based on the fundamental ideas of Darwin’s theory of evolution as well as Mendel’s theory of genetic heritage. In this paper, we debate whether pseudo-random processes are needed for evolutionary algorithms or whether deterministic chaos, which is not a random process, can be suitably used instead. Specifically, we compare the performance of 10 evolutionary algorithms driven by chaotic dynamics and pseudo-random number generators using chaotic processes as a comparative study. In this study, the logistic equation is employed for generating periodical sequences of different lengths, which are used in evolutionary algorithms instead of randomness. We suggest that, instead of pseudo-random number generators, a specific class of deterministic processes (based on deterministic chaos) can be used to improve the performance of evolutionary algorithms. Finally, based on our findings, we propose new research questions.
...
Julkaisija
ElsevierISSN Hae Julkaisufoorumista
0020-0255Asiasanat
Julkaisu tutkimustietojärjestelmässä
https://converis.jyu.fi/converis/portal/detail/Publication/101916780
Metadata
Näytä kaikki kuvailutiedotKokoelmat
Lisätietoja rahoituksesta
The following grants are acknowledged for the financial support provided for this research: grant of SGS No. SGS SP2021/72, VSB-Technical University of Ostrava, Czech Republic, grant Pure ID 75207094 of St.Petersburg State University, Russia. The research leading to the published results was also supported by the Ministry of the Interior of the Czech Republic under grant ID VJ01010008 within the project Network Cybersecurity in Post-Quantum Era. ...Lisenssi
Samankaltainen aineisto
Näytetään aineistoja, joilla on samankaltainen nimeke tai asiasanat.
-
Evolutionary Algorithms and Metaheuristics : Applications in Engineering Design and Optimization
Greiner, David; Periaux, Jacques; Quagliarella, Domenico; Magalhaes-Mendes, Jorge; Galván, Blas (Hindawi Publishing Corporation, 2018) -
A Performance Indicator for Interactive Evolutionary Multiobjective Optimization Methods
Aghaei Pour, Pouya; Bandaru, Sunith; Afsar, Bekir; Emmerich, Michael; Miettinen, Kaisa (IEEE, 2024)In recent years, interactive evolutionary multiobjective optimization methods have been getting more and more attention. In these methods, a decision maker, who is a domain expert, is iteratively involved in the solution ... -
Evolutionary design optimization with Nash games and hybridized mesh/meshless methods in computational fluid dynamics
Wang, Hong (University of Jyväskylä, 2012) -
Data-Driven Evolutionary Optimization : An Overview and Case Studies
Jin, Yaochu; Wang, Handing; Chugh, Tinkle; Guo, Dan; Miettinen, Kaisa (Institute of Electrical and Electronics Engineers, 2019)Most evolutionary optimization algorithms assume that the evaluation of the objective and constraint functions is straightforward. In solving many real-world optimization problems, however, such objective functions may ... -
A New Paradigm in Interactive Evolutionary Multiobjective Optimization
Saini, Bhupinder Singh; Hakanen, Jussi; Miettinen, Kaisa (Springer, 2020)Over the years, scalarization functions have been used to solve multiobjective optimization problems by converting them to one or more single objective optimization problem(s). This study proposes a novel idea of solving ...
Ellei toisin mainittu, julkisesti saatavilla olevia JYX-metatietoja (poislukien tiivistelmät) saa vapaasti uudelleenkäyttää CC0-lisenssillä.