DGA detection using machine learning methods
Yksi yleisimmistä kyberhyökkäysistä on käyttää ryhmä yksityisiä tietokoneita (private
computers), joita käytetään esimerkiksi salaisien tietojen levittämiseen. Näitä koneryhmiä
kutsutaan botnet. Botnetit pysyvät havaitsemattomana käyttämällä Domain Name
Generation (DGA) menetelmää, joka luo ajoittain ja ratkaisee suurina lukumäärinä erillaisia
pseudosatunnaisia verkkotunnuksia, kunnes jokin näistä pseudosatunnaisista
verkkotunnuksista DNS palvelin hyväksyy. Tämän tutkielman tarkoitus on kehitellä ei-
ohjattuja koneoppimismenetelmiä ja vertailla näiden tarkkuutta ohjattuihin
koneoppimismenetelmiin DGA hyökkäyksien havaitsemiseen. Lisäksi, tutkielmassa
esitellään Random One Class Support Vector Machine (ROC-SVM) menetelmä, joka
havaitsee tarkemmin DGA hyökkäyksiä verrattuna ohjatuihin koneoppimismenetelmiin. botnet is a network of private computers infected with malicious software and controlled
as a group without the knowledge of the owners. Botnets are used by cyber criminals for
various malicious activities such as stealing sensitive data, sending spam, launching
Distributed Denial of Service (DDoS) attacks, etc. A Command and Control (C&C) server
sends commands to the compromised hosts for executing those malicious activities. In order
to avoid detection, recent botnets such as Conficker, Zeus and Cryptolocker apply a
technique called Domain Fluxing or Domain Name Generation Algorithms (DGA), where
the infected bot is periodically generating and trying to resolve a large number of pseudo-
random domain names until one of them is resolved by the DNS server. In this thesis, we
survey different machine learning methods for detecting such DGAs by analyzing only the
alphanumeric characteristics of the domain names in the network. We propose unsupervised
models and evaluate their performance while comparing them with existing supervised
models used in previous researches in this field. In addition, we propose a novel approach
for unsupervised one-class SVM model for anomaly detection, which called Random One
Class SVM (ROC-SVM). Our proposed unsupervised methods achieve better results than
the compared supervised techniques, while detecting zero-day DGAs. If the run-time is of
main concern, our novel approach for unsupervised one-class SVM is the best model among
the others.
...
Metadata
Show full item recordCollections
- Pro gradu -tutkielmat [29564]
Related items
Showing items with similar title or keywords.
-
Evaluation of Ensemble Machine Learning Methods in Mobile Threat Detection
Kumar, Sanjay; Viinikainen, Ari; Hämäläinen, Timo (Infonomics Society, 2017)The rapid growing trend of mobile devices continues to soar causing massive increase in cyber security threats. Most pervasive threats include ransom-ware, banking malware, premium SMS fraud. The solitary hackers use ... -
Analysing Multidimensional Strategies for Cyber Threat Detection in Security Monitoring
Shelke, Palvi; Hämäläinen, Timo (Academic Conferences International Ltd, 2024)The escalating risk of cyber threats requires continuous advances in security monitoring techniques. This survey paper provides a comprehensive overview of recent research into novel methods for cyber threat detection, ... -
Unsupervised network intrusion detection systems for zero-day fast-spreading network attacks and botnets
Vahdani Amoli, Payam (University of Jyväskylä, 2015)Today, the occurrence of zero-day and complex attacks in high-speed networks is increasingly common due to the high number vulnerabilities in the cyber world. As a result, intrusions become more sophisticated and fast ... -
A method for anomaly detection in hyperspectral images, using deep convolutional autoencoders
Penttilä, Jeremias (2017)Menetelmä poikkeavuuksien havaitsemiseen hyperspektrikuvista käyttäen syviä konvolutiivisia autoenkoodereita. Poikkeavuuksien havaitseminen kuvista, erityisesti hyperspektraalisista kuvista, on hankalaa. Kun ongelmaan ... -
Defensive Machine Learning Methods and the Cyber Defence Chain
Turtiainen, Hannu; Costin, Andrei; Hämäläinen, Timo (Springer, 2023)Cyberattacks are now occurring on a daily basis. As attacks and breaches are so frequent, and the fact that human work hours do not scale infinitely, the cybersecurity industry needs innovative and scalable tools and ...