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Abstract:  

A botnet is a network of private computers infected with malicious software and controlled 

as a group without the knowledge of the owners. Botnets are used by cyber criminals for 

various malicious activities such as stealing sensitive data, sending spam, launching 

Distributed Denial of Service (DDoS) attacks, etc. A Command and Control (C&C) server 

sends commands to the compromised hosts for executing those malicious activities. In order 

to avoid detection, recent botnets such as Conficker, Zeus and Cryptolocker apply a 

technique called Domain Fluxing or Domain Name Generation Algorithms (DGA), where 

the infected bot is periodically generating and trying to resolve a large number of pseudo-

random domain names until one of them is resolved by the DNS server. In this thesis, we 

survey different machine learning methods for detecting such DGAs by analyzing only the 

alphanumeric characteristics of the domain names in the network. We propose unsupervised 

models and evaluate their performance while comparing them with existing supervised 

models used in previous researches in this field. In addition, we propose a novel approach 

for unsupervised one-class SVM model for anomaly detection, which called Random One 

Class SVM (ROC-SVM).  Our proposed unsupervised methods achieve better results than 

the compared supervised techniques, while detecting zero-day DGAs. If the run-time is of 

main concern, our novel approach for unsupervised one-class SVM is the best model among 

the others. 
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Suomenkielinen tiivistelmä:  

Yksi yleisimmistä kyberhyökkäysistä on käyttää ryhmä yksityisiä tietokoneita (private 

computers), joita käytetään esimerkiksi salaisien tietojen levittämiseen. Näitä koneryhmiä 

kutsutaan botnet. Botnetit pysyvät havaitsemattomana käyttämällä Domain Name 

Generation (DGA) menetelmää, joka luo ajoittain ja ratkaisee suurina lukumäärinä erillaisia 

pseudosatunnaisia verkkotunnuksia, kunnes jokin näistä pseudosatunnaisista 

verkkotunnuksista DNS palvelin hyväksyy. Tämän tutkielman tarkoitus on kehitellä ei-

ohjattuja koneoppimismenetelmiä ja vertailla näiden tarkkuutta ohjattuihin 

koneoppimismenetelmiin DGA hyökkäyksien havaitsemiseen. Lisäksi, tutkielmassa 

esitellään Random One Class Support Vector Machine (ROC-SVM) menetelmä, joka 

havaitsee tarkemmin DGA hyökkäyksiä verrattuna ohjatuihin koneoppimismenetelmiin. 

Avainsanat: koneoppiminen, tietoturva, rakenteeton data, DGA-algoritmi, botnet   
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1 Introduction 

A botnet is a network of private computers infected with malicious software and controlled 

as a group without the knowledge of the owners. Cyber attackers use botnets for various 

malicious activities, such as stealing sensitive data, sending spam, launching Distributed 

Denial of Service (DDoS) attacks, etc. [1]. Botnets are controlled by a centralized Command 

and Control (C&C) server, which sends commands to its bots. There are several static 

mechanisms to block the communication between the bots and the C&C server. For example 

by blacklisting the C&C server IP and domain, the bots are unable to establish a command 

and control traffic with the server. In order to bypass such mechanisms, botnet operators are 

using more sophisticated techniques to hide the C&C server fingerprints.  

In this work, we will focus on Domain Fluxing or Domain Name Generation Algorithms 

(DGA), where the infected bot tries to communicate with its C&C server by periodically 

generating and trying to resolve a large number of pseudo-random domain names until one 

of them succeeds. Meanwhile, the attacker registers only one or a few generated domain 

names. The large number of potential rendezvous points makes it difficult for security 

vendors to pre-register and block the domain names. This technique is also popular among 

spammers in order to avoid detection. For instance, spammers advertise randomly generated 

domain names in their spam emails. Therefore, it is harder for security engines to detect and 

take down these domains with traditional techniques such as blacklists of regular expressions 

representing malicious domain names. Moreover, even if one of the domains has been 

blocked, the attackers can register another domain in its domain list. 

Several tactics have been proposed to detect botnets. Most of them analyze network traffic 

to detect botnets by studying correlated activities between various clients. Applying these 

strategies to all networks is unfeasible and very performance-intensive. Other researchers 

suggest using reverse engineering [2] to understand the underlying pattern of the DGA. 

However, this technique is both resource and time consuming, which makes it impractical 

for real time detection and protection. 
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A more practical approach would be to analyze DNS traffic to detect if domain names have 

been generated algorithmically. Once detected, the network administrator can disconnect 

bots from their C&C server by blocking these DNS queries. 

Our methodology to detect algorithmically generated domains focuses on Machine Learning 

and specifically Anomaly Detection methods, and is based on the assumption that botnet 

owners, who build and operate DGA botnets, have some constraints when generating the 

domain names. On the one hand, they need to avoid using real words in their hostnames, 

because these words are more likely to already be registered as real domain names. Hence, 

botnet developers would prefer to generate many domain names that are unpredictable to 

anyone, especially to security vendors. On the other hand, registering the C&C server on a 

purely random domain name will satisfy this need, but this name is unpredictable to the bots.   

As a result, pseudo-random domain names are generated, which means that as in encryption, 

they choose a seed that is known only to the C&C server and its bots. These constraints cause 

the DGA domains to significantly differ from human-generated domains. We would like to 

exploit this differentiation. 

  Related Campaigns 

Notable examples of DGA bots are Conficker, Kraken, Torpig, Murofet and Srizbi, to name 

a few. Each one of them uses a different algorithm for generating random domain names 

while using a different random seeding. 

Conficker-A, B [3]: this worm infected millions of IP addresses from 206 countries. It 

causes various Windows operating systems (OS) to execute an arbitrary code segment 

without authentication. It generates 250 random domains every couple of hours. The 

randomizing process is seeded with the current Coordinated Universal Time (UTC) system 

date. In order to sync all the different bots to the same date and time, an 

HTTP_QUERY_DATE query is sent to one of six legitimate search engines such as 

‘yahoo.com’ and ‘answers.com’. This way, all clients try to contact the same set of domain 

names every day. Each domain contains four to 10 characters, while the Top Level Domain 

(TLD) is randomly selected from a predefined list of 110 TLDs. Conficker-C [4] is a 
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modified version, where the number of randomly generated domains increases to 50,000 a 

day, while the server randomly chooses only 500 of them to register every 24 hours. Some 

examples of the Conficker hostnames include ‘viinrfdg.com’, ‘qwnydyb.cc’ and 

‘wqqfbutswyf.info’. 

Kraken (a.k.a. Oderoor and Bobax) [5]: it uses social engineering techniques to infect 

machines, mostly by the distribution of a huge amount of spam emails.  In order to 

communicate with the C&C server, the malware generates a random string between six and 

11 characters, and combines it with one of the second level domains of the Dynamic DNS 

(DDNS) providers: ‘yi.org’, ‘dydns.org’, ‘mooo.com’, or ‘dynserv.com’.  

To explain the meaning of second level domain, we take a look at the following domain 

name for example: ‘mail.google.com’. We refer to ‘google.com’ as the second level domain, 

and ‘google’ as the second level domain label. 

Examples of such domains are ‘quowesuqbbb.mooo.com’ and ‘bayqvt.dyndns.org’. 

Torpig (a.k.a. Sinowal and Mebroot) [6]: targets computers with Windows OS. It is 

designed to collect personal and corporate sensitive data, such as bank account and credit 

card data. In 10 days, Torpig retrieved 180,000 infections and recorded more than 70 GB of 

data from the victims. In order to generate a random domain, it uses the Twitter API to 

request trending topics [7] and takes the second character of the fifth most popular Twitter 

search on the calculated date in two specific hours on the same day as a seed. The algorithm 

rotates between the two generated domains twice a day. In a particular month, generated 

domain names will end with the same three characters. For example, domains generated on 

December will end with ‘twe’: ‘wghfqlmwtwe .com’, ‘sfgtilbstwe .com’ etc.  

Murofet [8]:  is used to infect computer files and to steal passwords. The virus attempts to 

download arbitrary executable files from the generated domains. The seed of the generated 

domains is calculated by taking the most significant byte from the current year, month and 

day, and processing them into one seed value. This process repeats 800 times a day, and 

every time the seed is incremented by one. TLD are taken from the set: {biz, com, info, net, 

org, ru}. Examples are ‘zlcssltmlwknnk.com’ and ‘kvovtsxogyqyvro.net’. 
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Zeus [9]: is a family of credential-stealing trojans. It generates domain names by calculating 

the MD5 hash function over the sequence of the year, month, day and domain index. The 

DGA concatenate one of the TLDs mentioned in Murofet.  Every week a bot generates a list 

of 1000 unique domains and tries to connect to each of them until it receives a response. 

Example domains are ‘aqm5ar1sa72cwhien6614rlwrr.com’ and 

‘13rmowp60nkcw1d0m2ceyatb1f.com’. 

Srizbi [10]: sends spam emails from infected computers, which contain fake videos of 

celebrities and include a link to the malware kit. It takes the current date and transforms it in 

various ways in order to generate a seed for producing random domain names. The domain 

names include only the first 14 letters in the keyboard (q, w, e, r…). For example, 

‘yrytdyip.com’ and ‘ododgoqs.com’. 

CryptoLocker: is a family of ransomware Trojans [11]. It is designed to encrypt the victim’s 

files on the computer and demand a ransom from the victim in order to recover them. The 

seed for generating domains is based on the current date (day, month and year) [12]. The 

domains include 19-20 characters. The bot tries iteratively to reach the C&C server using 

the generated domains and once it succeeds, it obtains the public key from the server. After 

retrieving the public key, it starts encrypting files on the computer. ‘axoxypwociacbjw.com’ 

and ‘jsjvitqhvvdnjlfn.com’ are examples of such domain names. 

  Thesis Scope 

In this thesis we survey various methods for anomaly detection using supervised machine 

learning techniques and propose several unsupervised approaches, which are based on DGAs 

domain expertise. We focus on alphanumeric characteristics of the domain names and 

disregard other data, e.g. the IP address. We evaluate the performance and accuracy of the 

suggested techniques using a real dataset that contains four DGA botnets and compare them 

to the state-of-the-art methods.  
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  Contributions  

In this thesis we present a novel approach for detecting DGAs. Our approach differs from 

previous approaches in three ways.  

We use unsupervised machine learning methods, which means that no manually labeled 

training data is required to classify the domains as legitimate or malicious. Another 

important advantage of using unsupervised learning is the ability to detect DGAs that did 

not exist in the training data (zero-day DGAs), as described in Sect. 6.4.1.  

In addition to the familiar unsupervised methods, we also developed a novel unsupervised 

algorithm, called Random-OC-SVM (ROC-SVM), that incorporates prior knowledge about 

the DGAs to achieve better detection 

Third, our DGA detection techniques are based only on alphanumeric features of the domain 

names, without having to analyze any additional data such as the IP address, the response 

packet to the DNS request, etc. This is more efficient and easy to implement than techniques 

that require additional data. 

Since we do not analyze the traffic behavior or cluster domains offline, but rather analyze 

any new domain name independently, our generated model can be applied online to detect 

and block suspicious domains in real time before the bots start to communicate with the 

C&C server. 

We applied a variety of techniques for unsupervised anomaly detection and compared those 

methods with the existing techniques. We found that our approach achieved competitive 

results compared to supervised techniques. 

  Structure of the Thesis 

This thesis is organized as follows: Section 2 surveys related work in this field. In Sect. 3 

we present some supervised techniques for detecting DGA, and in Sect. 4 we suggest 

unsupervised techniques for this task In Sect. 5 we describe approaches for unsupervised 

SVM, including our novel method. Section 6 presents experimental results and Sect. 7 
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summarizes our work and discusses the results and limitations, as well as computation 

complexity and potential errors. To conclude, we suggest future work to improve our 

research. 

 



 

12 

 

2 Related Work 

McGrath and Gupta [13] examined several network features such as IP addresses, “whois” 

records and lexical features of URLs and domains classified to phishing and non-phishing 

websites. They observed that each class has a different alphabet distribution. Their 

conclusion was that malicious domain names are shorter than non-malicious domain names, 

mostly use fewer vowels, have a significant difference of alphabet distribution probability, 

and have more unique characters. Their motivation was to find useful heuristics to filter 

phishing-related emails and identify suspicious domain registrations. 

Cisco [14] developed a first component of their DGA detection system. They presented a 

language-based algorithm for detecting randomly generated strings. The algorithm assigns a 

randomness score to each domain in order to decide whether it is algorithmically generated 

or not. To estimate this score, they first built a large set of dictionaries encompassing various 

languages, e.g. English, French, Chinese, etc., and also included English names, Scrabble 

words, Alexa 1000 domain names and texting acronyms. Those dictionaries are used to find 

meaningful sequences in the domain names, which are unlikely to appear in a DGA-

generated name.  

For each inspected domain, all substrings are extracted and several features are calculated, 

such as the number of substrings appearing in the dictionaries, their corresponding length 

and the number of different languages used. From the extracted features they built a linear 

model that calculates the randomness score. They showed a false-negative rate between 0 

and 2% on nine different DGAs. 

Yadav et. al. [15] presented a methodology to detect domain-fluxes by looking at the 

distribution of alphanumeric characters, both unigrams and bigrams. This methodology is 

based on the assumption that there is a significant difference between human-generated and 

algorithm-generated domains in terms of the distribution of alphanumeric characters. They 

first grouped together DNS queries via connected components, i.e. they share the same 

second level domain, they are mapped to the same IP address, etc. Then, on each group they 

computed KL-Divergence, Jaccard Index and Edit distance (see Sect. 3.1-3.3) on unigrams 

and bigrams within the set of domain names. N-gram of a string is a group of substrings of 
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size n, which are extracted using a sliding window of length n from the beginning of the 

string to the end. For example, unigrams of the word ‘domain’ would be 

{‘d’,’o’,’m’,’a’,’i’,’n’}, and bigrams of that word are {‘do’,’om’,’ma’,’in’}. 

They evaluated their experiments on one day of network traffic of Tier-1 ISP in the Asia and 

South America dataset and detected Conficker, as well as some other unknown botnets. They 

claim to have 100% accuracy rate with less than 6% false positives.  

There are some weaknesses in their approach: 

Grouping domains by their second level domain may give rise to false positives, since some 

legitimate domains have the same second level domains as malicious. Furthermore, in 

grouping together domains mapped to the same IP address one might group together many 

domains, legitimate and malicious, that belong to the same IP. For example, Google Sites is 

a service that hosts many domains using the same second level domain and IP, while some 

of them might be malicious. 

Another weakness is that the metrics suggested in their paper require a minimal number of 

domains in each group to achieve accurate results. However, many groups in real life data 

do not satisfy this requirement, resulting in many domains that would not be classified since 

their groups were discarded. 

One of the metrics applied for detection is the Jaccard Index (JI) between a set of legitimate 

or malicious components and a test distribution. Here the JI is implemented on sets of bigram 

on a host name or domain label. As long as the size of the legitimate sets of bigrams gets 

larger, a higher accuracy will be achieved. However, storing all the bigrams is both memory- 

and CPU-consuming. 

Antonakakis et al. [16] proposed a detection system called Peiades. They assumed that the 

response to DGA queries will mainly be Non-Existent Domain (NX-Domain) and that 

infected machines in the same network with the same DGAs would receive a similar NX-

Domain error response. They combined clustering and classification techniques to group 

together similar domains by the domain name string pattern and then define the DGA they 

belong to. After discovering the domains generated by the same DGA, they developed a 
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method to resolve the C&C server. Over a period of 15 months, they found 12 DGAs, of 

which only half of them were known. They presented true-positive rates of 95-99% and 

false-positive rates of 0.1-0.7%. 

However, their system has some limitations. Their algorithm requires mapping of traffic data 

to the corresponding host, while in most organizations the hosts are connected to the internet 

via NAT, Firewall, DNS server etc., and hence one IP might represent many different hosts. 

Also, most hosts use DHCP, so one host might have different IPs in a period of traffic 

investigation. 

Detecting the C&C server would be very difficult and inaccurate in a case where the botnets 

use a combination of both domain-fluxing and IP-fluxing network, where the C&C domains 

point to a set of IP-addresses. Even after the C&C server was detected, their system could 

not block all the IPs in real time.  

Their proposed detection system uses a classification algorithm that is based on calculating 

the similarity between the inspected DGA and the existing DGAs using a machine learning 

technique. Therefore, when a new botnet generates an NX-Domain traffic pattern that is 

similar to an existing DGA, it might be wrongly classified as the existing DGA. Moreover, 

if a new variation of an existing DGA but with a different traffic pattern is tested against the 

existing DGAs, it would be wrongly classified as a new DGA.  

Finally, in order to confuse the proposed system, malware developers can use the same DGA 

twice; the first one with one seed to generate the domains and the second one with a different 

seed to add noise with fake domains and thus receive a large amount of NX-Domain errors. 

During the learning phase, the noisy and the real NX-Domain would be clustered together, 

resulting in lower accuracy when learning the model for the domain name. 

Abu-Alia [17] presented a set of techniques to detect DGAs without grouping together 

domains prior to classifying them. The techniques used are based on the areas of machine 

learning and statistical learning. They extracted alphanumeric features from the domain 

names and compared the performance between three machine learning classifiers: Support 

Vector Machine (SVM), Neural Network (NN) and Naïve Bayes. During the training phase, 

they generated traffic data consisting of previously known DGAs and a large set of legitimate 
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domains by a process that determines the domain name associated with a given IPv4 address. 

This process is called Reverse DNS Lookup. 

The extracted features per domain are detailed below: 

Number of vowels in the domain name: it is expected that the number of vowels in legitimate 

domains is higher than in malicious domains. For each domain, the ratio between the number 

of vowels and the domain length is calculated. 

Number of unique alphanumeric characters: assuming that random domain names will 

contain more unique characters. 

Number of dictionary words: they obtained a list of words that appear in the English 

dictionary and for every domain they checked how many dictionary words it contains. They 

calculated the ratio between the number of dictionary words and the domain length.  

The ratio between the numbers of dictionary words appears in the domain name and the 

length of the domain name 

Average Jaccard index on bigrams and trigrams: the Jaccard index between a test domain 

and every legitimate domain. Average is taken over the Jaccard index results. The Jaccard 

index metric is described in Sect. 3.2. 

Number of dictionary non-existent bigrams and trigrams: they obtained a list of bigrams and 

a list of trigrams from the database of legitimate domain names. Then, they obtained two 

lists of all possible alphanumeric bigrams and trigrams and filtered the legitimate bigrams 

from them. The presence of bigrams and trigrams in a particular domain that do not appear 

in the legitimate domains might imply that it is malicious. 

Their experiments revealed that the SVM classifier showed the best results with 5.97% false 

positives and 0.12% false negatives. Neural network classifier false positive rate was 2.7% 

and false negative rate was 6.1%. This method suffers from the following drawbacks: 

Neural network and SVM are computationally intensive. They have also examined the Naïve 

Bayes classifier, which is better considering the run-time but its accuracy is much worse.  
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Another complexity limitation is the calculation of the Jaccard Index for each new test case. 

Each test case is compared to each labeled data, resulting in computing the Jaccard metric 

100,000 (the size of their dataset) times.  

They mentioned in the paper that a small number of features has been extracted. In real world 

scenarios, more features will probably be required. But again, adding more lexical features 

will cause more computational costs. 

Nguyen et al. [18] presented a large-scale botnet detection system that is dedicated to DGA-

based botnets. This system has the ability to detect centralized architecture botnets, as well 

as their bots, by analyzing DNS traffic logs of the computer network. They claim that their 

system is able to detect new editions of a botnet, which is hard to find by reverse malware 

binaries. Their method is based on a Big Data platform and uses Collaborative Filtering and 

density-based clustering. Their algorithm relies on the similarity in characteristic distribution 

of domain names to remove noise and group similar domains. Their technique yielded a false 

positive rate of 18% and a false negative rate of 22%. 

 Their system architecture is focused only on botnets with centralized architecture. 

Therefore, their algorithm cannot detect Peer to Peer (P2P) botnets such as Zeus. Another 

limitation is that prior to analyzing the domains, they have to capture the entire DNS traffic 

from the logs of the users. Ideally, we would like to have a technique that only takes the 

domain names as input with no extra information. 
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3 DGA Detection Using Supervised Learning 

In this section, we describe various methods for DGA detection, while in Sect. 6 we present 

their performance evaluation. These methods are considered as supervised learning, since 

during the training phase, labeled data is required to build the models. 

  KL-Divergence  

Yadav et. al. [15] suggested to use the Kullback-Leibler (KL) Divergence, a non-symmetric 

metric that is used to calculate the distance between probability P and probability Q in the 

following way [19]:  

1

( )
( || ) ( ) log

( )

n

KL
i

P i
P Q P i

Q iD



  (1) 

Where n is the number of possible values for a discrete random variable. P represents the 

test distribution and Q represents the base distribution. In order to avoid singular 

probabilities, we use the symmetric form of this metric, which is given by:  

1
( ( ) ( ))

2
sym KL KLD D Q D PP Q      (2) 

Assuming g is a non-malicious domain name probability distribution given by unigrams or 

bigrams and b is a malicious domain probability distribution of these features. The anomaly 

score for a test domain with distribution d is calculated as: 

( ) ( )
sym sym

dscor be g dD D    (3) 

If the anomaly score is greater than zero, the domain is classified as malicious and normal 

otherwise. 

In our experiments, we calculated KL distance on bigrams and unigrams of domain names.  

The testing domain is compared both to the malicious distribution and to the legitimate 

distribution, since the testing domain might be different from both of the distributions. 

Therefore, combining the KL divergence scores helps to scale the results in a better way. 
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  Jaccard Index  

The Jaccard Index (JI), which is also suggested in Yadav et. al. [15], is also called the 

Jaccard similarity coefficient [20]. It is used to determine the similarity between two random 

variables. It is defined as the ratio between the size of the intersection of the samples over 

the size of their union. In our context, where A and B are two sets of bigrams of two different 

hostnames, JI is calculated as follows:   

, 0 1.
A B

JI JI
A B


  



       (4) 

A low result implies that the bigrams of the two domains are different.  

For example: 

A = ‘thequickbrownfoxjumpsoverthelazydog’, number of bigrams = 35. 

B = ‘ickoxjsov’, number of bigrams = 8. 

| 35 8 6 37 6 / 37 0.6, 16| .A A B JIB             

Given a set G, which contains sets of bigrams of non-malicious domain name gi,

, 1ig G i G   , and a second set B, which contains sets of bigrams of malicious domain names 

, 1ib B i B   , a tested domain d is classified by calculating

| |

1

( , )

| |

G

i

i
g

JI d g

M
G




 and 

|B|

1

( , )

,
| |

i

i
b i

JI d b

M b B
B

 


  

Where ( , ),i iJI d g g G  
is the JI of the testing domain bigrams d and a non-malicious domain 

bigram gi, and ( , ),i iJI d b b B  is the JI of d and a malicious domain bigram bi. Mb  and Mg  

are the average of the JI results of the malicious and non-malicious, respectively. In this 

metric, as the JI score gets smaller the domain is considered as more malicious. 

At last, the final score of JI on bigrams is obtained by: 
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b gscore M M   

As explained in KL divergence, the combination of distances to the malicious and the 

legitimate domains is used in order to scale the results. This result is the anomaly score of 

each domain, since we expect bigrams occurring in randomized (malicious) hostnames to 

be mostly different when compared with the set of non-malicious bigrams. 

The input data used in Sect. 3.3 and 3.4, below, is a feature vector whose features are 

described in Sect. 2 with Abu Alia’s research description [17]. 

  Support Vector Machine (SVM)  

Abu-Alia [17] used an SVM machine learning model for binary classification [21]. Based 

on a training labeled dataset, it generates a model that assigns test samples into positive and 

negative categories. In our domain, the positive category is the malicious domains and the 

negative is the legitimate ones. The samples in this model are represented by points in space, 

with a clear wide gap between points belonging to the different categories. A new tested 

sample is determined to belong to one category or the other by the checking on which side 

of the gap they lie. Mathematically, given a training dataset of n points ( , ), 1 , ,n

i i ix y i n x    

and { 1,1},iy    where 
ix  represents a feature vector and

iy  is the corresponding label. r  

represents a vector notation. Our goal is to find the maximum margin hyperplane with (n-1) 

dimensions that gives the best separation between the group of feature vectors belonging to 

label “+1” from the group of feature vectors belonging to label “-1”, in order to minimize 

the generalization error, a measure that determines how accurately an algorithm is able to 

predict the value of a new unseen sample. The margins are considered from the nearest 

training points that belong to one class to the nearest training points that belong to the second 

class (the support vectors). More formally, a hyperplane can be described as a set of points 

x  : 0w x b    where w  is the normal vector to the hyperplane and b is the bias. Then we 

need to find the suitable w  and b  parameters satisfying the optimization problem:  

,
|| || . : ( ) 1, 1,...,i i

w b
Min w s t y w x b i n    (5) 



 

20 

 

The classification equation of a new point is: 

( )x sign w x b    (6) 

Figure 1 illustrates an SVM classification model.  

In case the training data is noisy, SVM might not find a clear margin between the two sets 

of points. In that case, SVM with soft margins can be used. Soft margins means that some 

training points are “allowed” to lie on the wrong side of the margin (+1 point on the -1 side 

and vice versa) but a penalty is added to these points. We use hinge loss function: 

(0,1- ( - )).i imax y w x b  Using this function, training points 
ix  that are misclassified will cause 

this function to result in a higher value, while well-classified points will get a 0 penalty. 

The updated optimization problem is now minimizing the equation: 

2

1

1
(0,1 ( )) || ||

n

i i

i

max y w x b w
n




 
    

 
 (7) 

  is the trade-off between increasing the size of the margins and the size of penalty allowed 

for misclassified points. Usually this parameter is drawn from the understanding of how 

noisy the ground-truth data is. For a small enough , the SVM soft margins model behaves 

Figure 1  SVM classification model with samples from two classes 
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the same as hard margins, whose optimization problem was described in Eq. (5) in this 

section.  

Many times a linear classifier, with or without soft margins, is not able to separate the data. 

To overcome this issue, SVM maps the feature vectors into higher dimensional space using 

a transformation function ( ).x  Function  , ’ ( ) ( ')Tx x xk x   is called the kernel function. 

The kernel function is used to measure the similarity between two feature vectors, x  and 'x

. This mapping into higher dimensional space is called the kernel trick, and it is applied by 

replacing every dot product in the algorithm with the kernel function. Thus, the decision 

function for a new point z  is changed from Eq. (6) to:  

( ( ) )z sign w z b    (8) 

In Sect. 6.3.3 we describe the kernel function chosen for our experiments.  

The anomaly score is obtained by the probability that a tested feature vector is a member of 

a malicious class. 

  Neural Network 

Neural Network, also known as Artificial Neural Network (ANN), is another method tested 

in [17]. ANN is a machine learning model inspired by the human brain [22], which is based 

on many simple processing elements called ‘neurons’ or ‘nodes’, each calculating a simple 

function. The neurons are highly interconnected in a layered model. Typically, the neurons 

are organized such that the first layer is the input layer, the last one is the output layer, and 

the layers between them are the hidden layers. Each connection between nodes has weight, 

which is determined during the training phase.  

Figure 2 demonstrates a typical architecture of ANN.  
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The results of each neuron in the input layer are calculated layer after layer, until the output 

layer is reached. Each neuron in every layer (excluding the input layer) accepts as input the 

results obtained from the neurons in the preceding layer, ( ),ig x  where i  is the index of the 

neuron in the layer. Then each neuron output is computed according to the following steps: 

Weighted sum: Each neuron calculates a weighted sum of its input neurons, ( ) ( ),i i

i

f x w g x  

where 
iw  is the connection weight. 

Non-linear transformation on the weighted sum: An example of such a transformation would 

be a sigmoid, which is defined by the formula
( )

1
( ( )) .

1 f x
f x

e






 Figure 3 illustrates the 

sigmoid function. 

1
 

 

Input Hidden Output 

Figure 2  Neural Network architecture 
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Activation function: This is a decision function that uses a threshold to decide whether the 

result received from the non-linear transformation is higher than the activation threshold or 

not, and determines the output result accordingly. The formal representation of the activation 

function using a threshold of 0.5 is: 

1 ( ( )) 0.5
( ( ))

0

f x
y g f x

otherwise

 
  


  (9) 

In the testing phase, when trying to classify a new sample, we feed the input to the network 

and then calculate each of the neurons’ outputs, layer after layer from the input, until we 

reach the output layer and the classification result is returned. An example function for a 

non-linear function for the output layer classification is called Softmax. Softmax takes the 

entire activation functions from the last output layer and transforms them to a vector of 

probability values, where the sum of probabilities of this vector is equal to 1. More formally, 

the softmax transformation for each neuron 
kx  in the output layer is: ( )

( )

1

( ( ))
k

k

f x

k K
f x

k

e
f x

e









 , where 

K is the number of classes in the classification problem. 

The common method of training ANN is called Backpropagation [23]. This method strives 

to minimize the loss function, which is the difference between the calculated output and the 

known label, by adjusting the weights in the model. Each labeled sample is fed to the network 

the same as in the testing phase, but when reaching the output layer, the algorithm calculates 

Figure 3  Sigmoid function 
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the difference from the known, desired output, and updates the weights of the model, so that 

the error will be minimal.  

The strength of ANN is the ability to detect sophisticated similarities and patterns, by using 

a combination of many simple operations.  

The trained ANN model predicts the probability of a new sample vector to belong to class 

1, which means this sample is malicious. The prediction is used as the anomaly score in our 

testing. 
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4 DGA Detection Using Unsupervised Learning 

In this section we propose several unsupervised machine learning methods for DGA 

detection. Unsupervised learning means that only a small portion of the dataset is needed to 

be manually labeled as a pre-process step, in order to fix the parameters of a model. The 

process of labelling a large dataset costs much time and effort, so avoiding it is a major 

advantage. Two of the methods are based on the K-Nearest Neighbors (KNN) [24] model. 

There are many variants to KNN, each providing a different result. The most common uses 

of a KNN model are classification and regression. We have chosen to use this model as an 

anomaly detection mechanism. In this approach, it is assumed that most of the training data 

belongs to the legitimate class and the few anomalous points are far away from the legitimate 

points in the feature space. Hence, a sample is said to have a high anomaly score if the 

distance to its kth nearest neighbor is too high, since if the point is legitimate it would have 

many close points, while a malicious one would not have close neighbors or only a few. 

Therefore, if the data contains n samples, the anomaly score would be the distance from a 

tested sample to the sample with the kth smallest distance (k<n), if that distance is higher 

than some trained threshold, the sample is determined to be anomalous. 

The distance function between two samples can be any measure metric. We applied two 

metrics: Edit distance and Jaccard Index, which will be described below.  

  Edit Distance 

Edit distance, which is the third metric suggested in [15], is used only on the test domains 

group without comparing to a database of distributions. Edit distance [25] takes two 

hostnames and computes how many transformations of single characters are required to 

transform one hostname to another. The rationale behind calculating the edit distance is that 

in a group of random domain names, the hostnames will totally differ from each other. 

Hence, when measuring the number of changes required to compare each domain within a 

group to the other domains in the same group, a high anomaly score is expected when the 

group includes DGAs. We used Levenshtein edit distance for the anomaly score. The 
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Levenshtein distance between two strings a and b, with lengths i and j, respectively, is given 

by: 

,

( )

( , ) ( , ) 0,

( 1, ) 1
( , )

( , 1) 1 .

( 1, 1) 1
i j

a,b

a b

a,b

a,b a b

max i j if min i j

lev i j
lev i j

min lev i j otherwise

lev i j 




  
 

 
   


  (10) 

( )1
i ja b  is the indicator function equal to zero when i ja b  and is equal to one otherwise. 

In our suggested implementation, we used this metric with a KNN classification model as 

follows: 

During the training phase, for each training domain we compute the edit distance to the rest 

of the domains and keep the distance to the first nearest neighbor. Then, an average and 

standard deviation of 1-nn distances is calculated. In order to have edit distance results in 

the range [0,1], the Levenshtein distance between two domains is scaled using the following 

equation: 

,_ ( , ) / ( )a bscaled dist lev i j max i, j   (11) 

During the testing phase, we compute a KNN model with k = 1 between testing domains to 

the training domains using the edit distance metric. The anomaly score is obtained by 

computing how many standard deviations the distance of the domain differs from the average 

of the training set. For example, assuming the average of the training set is 0.32 and the 

standard deviation is 0.1, if the distance between a tested domain to its nearest domain is 

0.52, the domain’s score would be 2 since 0.32+0.1*2 = 0.52 (two standard deviations away 

from the average).  

Calculating edit distance between a domain and the entire dataset increases the runtime costs 

significantly, since it compares each character of each domain against each character of the 

training domains. Therefore, we only compared between domains with similar lengths, i.e. 

a domain name with 10 characters is only compared against domains with lengths between 

6 and 14. We used the same ranges for calculating the edit distance for each domain. This 
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approach is reasonable since if we take, for example, two domains, one with eight characters 

and one with 30 characters, when comparing the edit distance between those domains the 

result would be at least 22 (the number of missing characters), and 22/30 after scaling. As 

mentioned above, we are interested in the first nearest neighbor, hence this result would 

probably not be the nearest.  

  Jaccard Index  

The Jaccard index (JI) metric on bigrams for supervised learning has been presented in Sect. 

3.2. In this section we define a new technique to detect malicious domains by JI without 

using labeled data. Since there is no dataset of ‘legitimate’ and ‘malicious’ domains as 

before, we generated a set that contains lists of bigrams of the domains in the training set. A 

KNN model is applied to detect the anomalous domains with JI on bigrams as the similarity 

metric. The JI formula is defined in Sect. 3.2. The JI similarity is calculated between the 

bigrams of the tested domain and each bigram’s list in the training set. The anomaly score is 

obtained by the kth JI result, which is the distance to the kth neighbor.  
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5 DGA Detection using Unsupervised SVM 

In Sect. 3.3 we described a supervised SVM model for binary classification.. In this section, 

we discuss a familiar approach of using SVM for anomaly detection, and propose a novel 

SVM-based model that achieves better detection of DGA domains. 

 One-Class SVM for Anomaly Detection 

In Sect. 3.3 we described a supervised SVM model for binary classification. This model is a 

supervised-learning method, used for classification. The traditional unsupervised version of 

SVM is called One-Class SVM (OC-SVM) [26], which is mostly used for anomaly detection. 

In this model, a decision function is constructed from the extracted features to find the 

hyperplane with the maximum margin, which will contain most of the data in a relatively 

small region. This decision function assigns the value “+1” in the area where most of the 

samples reside and “-1” otherwise.  

The assumption is that normal data points have similar features, while the abnormal points 

do not share this similarity. Thus, the probability of being related to the main class would be 

small. 

During the training phase, the model uses the training data to learn the hyperplane that best 

separates the majority of the data from the origin. Given a new sample x∈Xn, if its feature 

vector lies within the hyperplane subspace it is considered as normal and abnormal 

otherwise. Only a small portion of the dataset is allowed to lie on the other side of the 

decision boundary. Those data points are considered as outliers.  

The anomaly score given to a new sample is the distance of the sample from the separating 

hyperplane, if it is considered as an outlier. Otherwise, if the new sample is considered as 

inlier, the anomaly score is equal to zero.  

The quadratic programming optimization problem for n training samples is: 

2

, , 1

1 1
min

2

n

i

in  

  
 

 

 (12) 



 

29 

 

    . : ( ( )) , 0.i i is t x          

ξi represents the distance of the sample 
ix  from outside the hyperplane, which means the 

sample is misclassified. It equals 0 if it falls inside the hyperplane. ρ is the offset and   

represents the size of region containing most of the points.  

We would like to minimize the size of this region while also minimizing the number of 

outliers. ν ∈ (0,1] is the trade-off between those two targets. It sets the upper bound on the 

proportion of outliers and it is a lower bound on the number of training samples contained 

by the hyperplane. 

The decision function of a new point 𝑧 is therefore: 

( ( ) )iz sign x      (13) 

In order to find the optimal   and ρ, this problem is solved using a kernel function (see 

Sect. 3.3) and Lagrange multipliers for the dot-product calculations. 

OC-SVM technique can be a useful approach when the dataset is imbalanced, i.e. it contains 

much more normal samples than abnormals.  

  Random One-Class SVM (ROC-SVM) – a novel algorithm for OC-

SVM for Anomaly sdetection 

We suggest a novel approach for one-class SVM for anomaly detection. Our algorithm 

utilizes our domain-expertise in the field of DGAs, and mainly the random characters 

patterns exhibited in malicious DGA domains. In our approach, we train the supervised 

binary SVM model (described in Sect. 3.3) by constructing the dataset as follows: For the 

“normal” class data points, we use the whole unlabeled training dataset that contains both 

the malicious and legitimate domains. For the “abnormal” class data points, we synthetically 

generate a similar amount of domains, with random characters in random lengths. Hence, 

the input for the supervised SVM model consists of all training domains as class “+1”, and 
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a similar amount of artificial domains as class “-1”. That way, we can use the supervised 

SVM model, with all the benefits of unsupervised learning.  

Our assumption is that since the amount of the anomalous (malicious) samples in the training 

set is relatively small, the soft margins of the SVM model will be able to handle the 

misclassified domains. As described in Eq. (7), we can determine the proportion of data 

allowed for misclassification using the parameter λ. Given a dataset with label “+1”, the 

model can misclassify some of them as “-1” as long as the parameter λ is large enough. 

Hence, if we generate a training dataset that contains random domains, and label them as “-

1”, the real DGA samples in the “+1” class (the original training dataset), hopefully will 

determined by the model as anomalous. Hence, even though they were originally labeled as 

legitimate, they would be classified as malicious. The idea behind this assumption is that 

DGA domains share patterns with better correlation to pure-random domain names rather 

than to real legitimate domains. 

To illustrate how it works, we implemented the ROC-SVM model on some legitimate and 

malicious domains, and generated random domain names to train the model. We also 

implemented OC-SVM on the same legitimate and malicious domains, as shown in Fig. 4-

6. 

Figure 4  ROC-SVM with random domain names. The random and mali-

cious domains should fall in the red area, while the legitimate do-

mains should fall in the blue areas 
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   As seen from fig. 4, the ROC-SVM model separated the space to an area of random domain 

names and an area of legitimate domain names. The malicious domain names in this figure 

are in red. the arrows in fig. 5  and 6 point to the malicious points, that are close to the 

legitimate points in space, but the ROC-SVM classified them as malicious (they are part of 

the ‘random’ area), while the OC-SVM classifier regarded all of them as legitimate (they are 

Figure 6  OC-SVM.  The hyperplane is illustrated in blue, and represents 

the area of the legitimate domain names, while the malicious do-

main names should fall in the red area since they are the outliers 

Figure 5  ROC-SVM with random domain names, but the random generated 

domains are not illustrated in the graph 
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part of the blue – legitimate area). These figures show that adding random domain names 

can help the classifier to choose the best hyperplane for separating between DGA and 

legitimate domains. In addition, since the OC-SVM determines a small area as the 

‘legitimate’ area, and the outliers are considered as malicious, it also misses legitimate points 

that are far from the boundaries but should be part of the hyperplane of the legitimate points. 

ROC-SVM determines the exact area of the DGA points thanks to the prior knowledge about 

DGAs, and the random generated points during the training phase. Hence, it does not miss 

the legitimate points that are far from most of the legitimate points. The four points in the 

right side in the figures are a good example for these points. 

There are some advantages in this approach compared to other models described in Sect. 3 

and 4. First, like other unsupervised methods, it doesn’t require the hand-crafted labeling of 

the domains. This model is used like a supervised model by assigning the whole training 

dataset the “+1” label, and the randomly generated domains the “-1” label. Second, as 

mentioned in the previous section, imbalanced data may cause a higher misclassification 

rate. Thus, generating random data in the same amount as the domains in the real dataset can 

improve the classification results. 

In Sect. 6.5 we examine the results of both unsupervised approaches to SVM. 
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6 Experimental Results 

 Dataset  

Our dataset contains 3473 legitimate domains and 131 malicious domains related to four 

different campaigns, as shown in Sect. 1.1. We obtained the legitimate domains by recording 

one day of network traffic in a big organization. The malicious domains were collected from 

various security reports and malware analysis reports, as well as from various source codes 

of the relevant malwares. 

Label No. No. of domains Group 

1 50 Zeus 

2 27 Conficker 

3 24 Cryptolocker 

4 30 Zero-day Hex domains 

Table 1  Groups of malicious domain names 

  Results Evaluation 

In this section we describe our implementations of the different models described in 

Sect. 3-4. As mentioned in Table 1, we have four different labels for malicious domains. 

Therefore, we applied the algorithms four times and on each iteration we compared one label 

against the legitimate domains. The results are separated into the four different labels. We 

also applied the algorithm on the entire malicious dataset as one label against the legitimate 

dataset. 

We developed our methods using scikit-learn library for Python. It is an open-source library 

for machine learning algorithms. 
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We used k-fold cross validation model [27] for training and testing the data. In this technique 

the dataset is divided into k (in our case k =10) different groups of the same size. In each 

phase, (k-1) data groups are used for training and the remaining group is used for testing. 

This way each part of the dataset is classified only once and finally we have the whole dataset 

being classified. The cross validation model is used to avoid over-fitting: if we use the whole 

dataset for training, we will get a higher classification rate but when trying to predict on 

firstly unseen data, the classification rate might decrease. The accuracy of this model is the 

ratio between the size of the data that is correctly classified and the size of the whole dataset. 

In our tested dataset, the malicious domains had only two domain levels (i.e. 

‘sladfjhsaf.com’). Thus, it is not possible to group the domains by second level domains and 

it affects the way of implementing the metrics proposed in Yadav’s paper. 

As a consequence, we have computed the metrics over alphanumeric characters for each 

domain separately, without using grouping. We classified each domain separately by its 

alphanumeric characteristics and distributions against a database of malicious and legitimate 

domains.  

 

There are various ways to evaluate the performance of the different classifiers. In the 

following sections we describe how we evaluated the accuracy of the predicted anomaly 

scores. 

6.2.1 True Positive Rate (TPR) and False Positive Rate (FPR)  

Since we deal with a binary classification problem where the prediction could be one of two 

classes, 0 – legitimate, or 1 – malicious, we use the TPR and FPR. 

TPR measures the proportion of the positives that are correctly identified as such, while FPR 

measures the proportion of negatives that incorrectly identified as positives.  

TPR = (True-Positives/Positives), FPR = (False-Positives/Negatives). 
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Usually there is a trade-off between the two measures. This trade-off can be represented by 

a Receiver Operating Characteristic (ROC) curve (to be explained below). A perfect 

predictor would be described as 100% TPR and 0% FPR; however, in practice any predictor 

will possess a minimum error bound, which means that there would be some 

misclassification by the classifier. Thus, when running our experiments we choose the 

threshold that maximizes the TPR and minimizes the FPR. 

6.2.2 Receiver Operating Characteristics (ROC curve) 

This is a graph that illustrates the performance of a binary classifier system as its 

discrimination threshold is varied [28]. The curve is created by plotting the TPR against the 

FPR at various threshold values. ROC analysis provides tools to select possibly optimal 

models and to discard suboptimal ones independently from the cost context or the class 

distribution. In Sect. 5.3 and 5.4 we evaluate our results using an ROC curve over the 

anomaly scores of the different models. Each curve represents the result of each class label, 

including the class that contains the entire malicious dataset as one class label. 

6.2.3 Area Under the ROC Curve (AUC)  

This statistic metric is used in machine learning for comparing different models. Once the 

ROC is calculated, AUC measures the probability that a classifier will rank a randomly 

chosen positive instance higher than a randomly chosen negative one (assuming 'positive' 

ranks higher than 'negative'). It is calculated as follows: 

AUC results are in the [0, 1] range. In the optimal case, when a ROC curve gets perfect 

predictions, the AUC would be 1.  

https://en.wikipedia.org/wiki/Binary_classifier
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  Supervised Learning Evaluation 

6.3.1 KL – Divergence 

We computed this method twice: once with unigrams and once with bigrams. We separated 

the training data to legitimate and malicious, and for each of them we created a list of bigram 

(or unigram) distributions. Then we compared each test domain against the training groups, 

using the KL metric, as described in Sect. 3.1.  KL results are shown in Fig. 7. 

As seen in Fig. 7, the bigram results on our malicious dataset are very poor. To achieve TPR 

of 80% the FPR is about 80%, and for lower FPR the TPR is almost 0. When the KL-

divergence metric was used with unigrams instead of bigrams, the results were even worse. 

The problem with KL-divergence on unigrams is that it can only detect botnets with 

randomly generated domain names with uniform distribution. Also, for bigrams the 

assumption that DGAs necessarily have different bigram distribution from normal domains 

is sometimes a mistake. There are algorithms that generate domain names with the same 

bigram distribution as English words, such as Kraken. 

Figure 7  TPR and FPR of KL-Divergence on bigrams 
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6.3.2  Jaccard Index 

We obtained two databases (DBs), one for the malicious and a second for the non-malicious 

domain names; each contained lists of bigrams per domain. The lists were created as follows: 

For each domain from the training DB we computed its bigrams and added them to the 

corresponding DB. When testing a new domain d, we calculated its bigrams and computed 

the JI against each legitimate bigrams list from the training. We computed the JI similarity 

only against domains from the training DBs that contain at least 25% of the bigrams 

presented in d. Then we also discarded training domains that have less than 20% of the 

bigrams presented in the training, in common with d. For example, if a training domain 

contains 10 bigrams, we compute JI against the tested sample only if they have at least two 

bigrams in common. This threshold is useful in discarding words with less similarity and 

improves the accuracy of JI measurements. 

 After computing the JI against the DB of domains bigrams , we computed the average of 

the results. The same process was applied on the malicious DB. JI implementation on 

bigrams is discussed in Sect. 3.2. The results for each label appear in Fig. 8. As can be seen, 

JI achieves the best results when classifying class 4 and class 3, but only 0.79-0.86 AUC on 

the other classes. 

 

Figure 8  TPR and FPR of Jaccard Index on bigrams 



 

38 

 

6.3.3 Support Vector Machine (SVM) 

We trained the classifier with (k-1) groups of feature vectors, using the SVM classifier with 

Radial Basis Function (RBF) kernel [29] for the computations. This is a non-linear kernel 

that maps samples into higher dimensional space. It has less complexity than other kernel 

functions and has less numerical challenges. The RBF kernel is defined as: 

2
( , ') ( ' ).k x x exp x x    γ is a free parameter, which represents how far the influence 

of a single training example reaches. If we assign γ with too high a value, it might result in 

overfitting, since the radius of the area of influence of the support vectors includes only the 

support vector itself, no matter what the value of   is (see Sect. 3.3 Eq. 7). On the other 

hand, too small γ values might cause complications in handling complex data, since the 

radius of the area of influence of the support vector would include the whole training data. 

As one can see, in order to receive high accuracy for the classification of new test data, it is 

important to determine the optimal γ and . Therefore, a 10-fold cross validation model has 

been applied, and revealed that the best values of γ and λ are 0.1 and 1 respectively.  

The extracted features are described in Sect. 2. For testing a new domain those features were 

extracted and then we calculated the probability that the domain is malicious by computing 

the distance from the margin using the RBF kernel and used the result as the anomaly score. 

Results are shown in Fig. 9. 

Figure 9  TPR and FPR of SVM 
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 SVM completely succeeded to classify class 1 domains, and with FPR of 0.2 it achieves 

TPR above 0.8 for classes 2, 4, and the ‘all malicious’ class. For class 3, SVM achieves 0.4 

TPR with 0.18 FPR. 

6.3.4 Neural Network 

The same process as in SVM has been applied using the Neural Network (NN) classifier. 

The architecture of the NN classifier is used as follows: eight nodes in the input layer 

(number of extracted features), one hidden layer with 10 nodes, and one node in the output 

layer. 64 iterations were used for optimizing the values and updating weights, and the 

learning rate was 0.001. The activation function in the hidden layer was “sigmoid” and 

“softmax” for the output layer. The architecture and the other parameters of the network 

such as the activation function were obtained according to [17]. Using 10-fold cross 

validation we trained the network with malicious and legitimate domains in order to learn 

the weights. We tested the remaining domains on the NN using the learnt weights and the 

NN determined whether a tested domain is malicious or not. In Sect. 3.4 we explained how 

the classification process is done. 

Results are shown in Fig. 10. 

 

Figure 10  TPR and FPR of Neural Network 
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The neural network model provides the best results among the supervised classifiers 

examined. Again, class 1 achieved 100% success without false negatives, as well as class 4. 

The AUC of the rest of the classes is between 0.89 and 0.95.  

  Unsupervised Learning Evaluation Results 

For the evaluation of the unsupervised methods, used only a small amount of labeled data 

only for training the parameters of the models. 

6.4.1 Edit Distance 

During the training phase we calculated the edit distance between each domain and its 

nearest neighbor, as described in the equations in Sect. 4.1. Then, an average and standard 

deviation of the 1st neighbor of the different domains was taken. Each domain is compared 

only against domains with similar length, i.e. the difference between the lengths is less than 

five. 

Given a new sample, we calculated its edit distance to any other domain with a similar range 

and used the distance to the nearest neighbor. The anomaly score obtained by the number of 

standard deviations the domain is far from the average of the group. 

As seen in Fig. 11, by using this method we received AUC between 0.88 and 1 in all but 

class 2. After investigating the results on class 2, we found that the domains of class 2 contain 
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12-14 characters. On the other hand, our ‘legitimate’ dataset contains many domains of 

length 12 that seem random. Therefore, running the algorithm on a small subset of domains 

with similar lengths emphasizes the noise and affects the results.  

We verified those ‘legitimate’ domains manually and it seems that they were part of a botnet 

in the past. Using this unsupervised method we were able to detect unknown malicious 

domains that were misclassified as legitimate in the organization’s dataset.  

An example of domains from class 2 with different anomaly scores affected by their 

length, and of legitimate domains that have random characteristics with 12 letters, can be 

found in Table 2. 

True class Domain name Edit distance anomaly 

score 

Domain length 

malicious-2 sglzmfqmiw.com 0.3887 14 

malicious-2 iuobhicxny.com 0.3883 14 

malicious-2 pqkvaqpi.com 0.3881 12 

malicious-2 kmxnvuzy.com 0.3852 12 

malicious-2 xsbhnwdn.com 0.242 12 

legitimate twkfxcuk.com 0.3829 12 

legitimate nwgfgrml.com 0.326 12 

Legitimate vscjttcu.com 0.245 12 

Table 2  Example of domains and their anomaly score, with respect to 

their length. The table shows malicious domains from class 2 with 

different lengths, as well as some legitimate domains that look 

random and have 12 characters. Those domains were part of an of 

an old botnet 

Figure 11  TPR and FPR of Edit Distance 



 

42 

 

6.4.2 Jaccard Index 

We obtained a dataset of bigrams representing all the domains from the training set. When 

testing a new domain, we compute its bigrams and compare the JI measure to the kth nearest 

domain bigrams, using the KNN model. To predefine the right k that yields minimal error 

with maximal accuracy, several values of k were tested until we found the suitable value that 

solves the problem. In the anomaly detection problem, a small value of k is chosen (usually 

less than 10), but not too small, i.e. k =1, because such a model will not tolerate noise. We 

tested our model with different values of k between one and 10. Figure 9 shows the AUC of 

the model for the different values. It is easy to see that for k = 2-10 the model is robust, and 

there are no major differences between the different AUC results. 

According to Fig. 12, the best k for detecting anomalies in the data correctly is 2. The results 

in Fig. 13 show the AUC of the classes when the value of k is set to 2. 
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Figure 12  AUC of different k values for K-NN with JI 
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The results of this classifier show significant improvement compared to the supervised 

implementation of JI in Sect. 6.3.2. While in the previous implementation (Fig. 8) the ROC 

curve of the different classes was the same with AUC of 0.75, our new classifiers yield 100% 

TPR with almost zero FPR on classes 1 and 4, and less than 10% FPR on class 3 and ‘all 

malicious’ classes. When applying the classifiers on domains of class 2, a TPR of 100% 

results in FPR of 25%, and for 80% TPR, the FPR would be 10%. 

  Unsupervised SVM Evaluation 

In the following models, the extracted features from the dataset are the same features used 

in the binary supervised SVM, as described in Sect. 2.  

6.5.1 One-Class SVM 

In this model, the extracted features from the dataset are the same as used in the binary 

supervised SVM, which are described in Sect. 2. 

We trained the OC-SVM classifier with RBF kernel (see Sect. 6.3.3), and used 10-fold cross 

validation with several values of γ and υ in order to choose the optimal parameters for the 

model and the kernel. We found that the best values of γ and υ for this problem are 0.1 and 

0.25 respectively.  

Figure 13  TPR and FPR of unsupervised Jaccard Index on bigrams 
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We tested the remaining domains by a decision function, which determines the distance of a 

new point from the margins. The greater the distance, the higher the probability that the 

domain is malicious. Results are shown in Fig. 14. 

Similar to Edit Distance, OC-SVM fails in classifying domains that belong to class 2, but 

succeeds in classifying domains from class 1 and 4 with AUCs of 0.99 and 0.93, respectively. 

Our assumption for the misdetection of class 2 DGAs was explained in Sect. 6.4.1. 

6.5.2 Random One-Class SVM (ROC-SVM) 

In the training phase, we constructed a dataset that contains two classes: the first class 

contains the original dataset with both legitimate and malicious domains, and the second 

class contains randomly generated domains that were generated as follows:  

The amount of the randomly generated domains is similar to the number of domains in the 

real dataset. This way we ensure that the dataset is balanced. Since some DGAs domains 

contain only English letters while other are alphanumeric, we generated half of the random 

domains with the characters a-z only, and the second half was generated using a-z and 0-9.  

The domains lengths are uniformly distributed between 10 and 30, and the characters 

themselves were also chosen using uniform distribution. The format of the generated 

Figure 14  TPR and FPR of OC-SVM 
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domains is ‘random_characters.com’. We used those generated domains for the training 

phase only. 

Using 10-fold cross validation we determined the values of λ and C to be 0.1 and 1 

respectively. 

During the testing phase, we predicted the probability that a domain belongs to the malicious 

class, and assigned it as the anomaly score. Results are shown in Fig. 15. 

Fig. 15 shows a significant improvement comparing to OC-SVM. The AUC of most classes 

is between 0.97 and 0.99, and we succeeded to significantly improve the detection of class 

2 domains from 0.55 to 0.9. Our results are also better than the supervised SVM method. 

We tried to implement the same approach by adding the same random domains to the OC-

SVM model during the training phase. 

Figure 15  TPR and FPR of ROC- SVM 
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It is easy to see that when adding random domains to the OC-SVM model, the accuracy 

decreases. That is the expected result since OC-SVM is useful in finding anomalies, i.e. 

small amount of malicious domains with regard to the legitimate domains, and is designed 

specifically for imbalanced data. 

In order to determine the right percentage of randomly generated domains that will maximize 

the detection accuracy, we tried different amount of random domain names and calculated 

the AUC results accordingly, as shown in Fig. 17.    

Figure 16  TPR and FPR of OC-SVM with Random Domains 
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Figure 17  AUC on the different DGA classes for different ratios between 

the amount of random domain names and the original dataset size 

According to Fig, 17, among the different percentages of random data, the best AUC is 

achieved when the number of random domains names is 120% or 80% of the original dataset. 

In those cases, the AUC is between 0.96 and 1 for all classes except class 2. However, as 

already discussed before, by adding the random data the AUC of class 2 is improved 

significantly. For 80% and 120% random data the AUC is equal to 0.9. Furthermore, as the 

percentage of random domain names gets larger than 120%, the AUC of class 2 continues 

its improvement. 

To summarize the differences between the different SVM classifiers presented in 3.3, 5.1 

and 5.2, we plot the dataset in the features space, and draw the model in this space. For 

visualization purposes, we reduced the dimensions of the dataset using the Principal 

Components Analysis (PCA) algorithm [30]. In our case, the dimensions were reduced from 

8 (the number of the different features) to 2. Figures 18 – 21 illustrate the data points in the 

embedded space, and the way they are separated by the different classification models. The 

red area in each figure represents the domains that were classified as malicious by the model, 

while the blue area represents those that were classified as legitimate domains.  
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Figure 18  Illustration of the 

supervised SVM 

model with two clas-

ses using PCA 

Figure 19  Illustration of 

OC-SVM model 

using PCA 

Figures 20 and 21  Illustration of the unsupervised ROC-SVM model 

using random generated domains with two classes using PCA. 

The white squares in figure 20 (in the left) represent the addi-

tional random domain names 
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As seen from the figures above and the corresponding results, the randomly generated data 

helps the model in separating the data in a better way. It seems from Fig. 17 that the 

supervised SVM model suffers from overfitting of the data, and hence will fail classifying 

new unseen data. On the other hand, the OC-SVM model from fig. 18 misclassifies many 

points and fails fitting the data in a proper way. Among the three models, the one that best 

separates the data with the least misclassification and has the ability to handle future points 

is our novel classifier, with the additional random generated domains in amount of 120% of 

the original dataset size. 
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7 Conclusion 

In this thesis we have discussed and evaluated various machine learning methods for 

detecting DGA domains, by analyzing only the alphanumeric characteristics of the domain 

names in a monitored network.  

We proposed a novel unsupervised model to solve this problem. This model uses our 

domain- knowledge about DGAs in order to balance the dataset, and adapt the supervised 

SVM model to work as an unsupervised model.  

We compared the performance of all these techniques when applied on four classes of DGAs, 

as seen in Table 3. 

 Unsupervised methods Supervised methods 

 KNN (JI) KNN (edit 

distance) 

OC-

SVM 

ROC- 

SVM 

KL  

divergence 

JI SVM ANN 

Class 1 1 1 0.99 0.99 0.1 0.79 1 1 

Class 2 0.96 0.66 0.55 0.9 0.81 0.86 0.9 0.89 

Class 3 1 0.86 0.83 0.97 0.22 0.96 0.81 0.95 

Class 4 1 0.89 0.93 0.98 0.68 1 0.94 1 

All    malicious 0.99 0.88 0.86 0.97 

 

0.4 0.86 0.91 0.95 

Runtime per       

domain (msec) 

110 390 0.02 0.05 

 

 

0.5 10 0.01 0.03 

Table 3  Comparison between the unsupervised and supervised methods 

by the AUC of the different classes. The best AUC result of each 

class is marked in blue. The last line in the table represents the 

runtime in milliseconds for testing a new domain 

As can be seen, the KNN model that uses the JI metric achieves the best AUC among all 

different classes, even better than the supervised methods. Nevertheless, the complexity of 
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computing the JI metric between the bigrams of the tested domain and the training dataset is 

high. If the run-time is a concern, our ROC-SVM model reaches the best trade-off between 

accuracy and runtime by achieving good AUC results, while keeping runtime competitive to 

the best methods.  

Although the KNN model that uses the edit distance metric achieved poor AUC when 

applied on domains from class 2, it detected zero-day domains that were part of the legitimate 

domains. The characteristics of the malicious domains of class 2 are similar to some domains 

from the legitimate dataset that are actually part of an old DGA. 

The advantages of the proposed unsupervised approaches are that no manually labeled 

training data is required in order to classify the domains as legitimate or malicious. This 

process costs much human labor and resources. It is also useful when there is not enough 

malicious data for training the model, or when trying to detect new unseen zero-day DGAs.  

Another advantage of our proposals is that by calculating only alphanumeric features of the 

domain names, without having to analyze the network characteristics, the detection process 

becomes easier to implement while maintaining a high rate of accuracy.  

Once detecting a suspicious domain, the communication with its server can be blocked until 

further analysis of the domain’s behavior can be applied by the security researchers. 
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