University of Jyväskylä | JYX Digital Repository

  • English  | Give feedback |
    • suomi
    • English
 
  • Login
JavaScript is disabled for your browser. Some features of this site may not work without it.
View Item 
  • JYX
  • Opinnäytteet
  • Pro gradu -tutkielmat
  • View Item
JYX > Opinnäytteet > Pro gradu -tutkielmat > View Item

DGA detection using machine learning methods

Thumbnail
View/Open
1.8 Mb

Downloads:  
Show download detailsHide download details  
Authors
Baruch, Moran
Date
2016
Discipline
TietotekniikkaMathematical Information Technology

 
Yksi yleisimmistä kyberhyökkäysistä on käyttää ryhmä yksityisiä tietokoneita (private computers), joita käytetään esimerkiksi salaisien tietojen levittämiseen. Näitä koneryhmiä kutsutaan botnet. Botnetit pysyvät havaitsemattomana käyttämällä Domain Name Generation (DGA) menetelmää, joka luo ajoittain ja ratkaisee suurina lukumäärinä erillaisia pseudosatunnaisia verkkotunnuksia, kunnes jokin näistä pseudosatunnaisista verkkotunnuksista DNS palvelin hyväksyy. Tämän tutkielman tarkoitus on kehitellä ei- ohjattuja koneoppimismenetelmiä ja vertailla näiden tarkkuutta ohjattuihin koneoppimismenetelmiin DGA hyökkäyksien havaitsemiseen. Lisäksi, tutkielmassa esitellään Random One Class Support Vector Machine (ROC-SVM) menetelmä, joka havaitsee tarkemmin DGA hyökkäyksiä verrattuna ohjatuihin koneoppimismenetelmiin.
 
botnet is a network of private computers infected with malicious software and controlled as a group without the knowledge of the owners. Botnets are used by cyber criminals for various malicious activities such as stealing sensitive data, sending spam, launching Distributed Denial of Service (DDoS) attacks, etc. A Command and Control (C&C) server sends commands to the compromised hosts for executing those malicious activities. In order to avoid detection, recent botnets such as Conficker, Zeus and Cryptolocker apply a technique called Domain Fluxing or Domain Name Generation Algorithms (DGA), where the infected bot is periodically generating and trying to resolve a large number of pseudo- random domain names until one of them is resolved by the DNS server. In this thesis, we survey different machine learning methods for detecting such DGAs by analyzing only the alphanumeric characteristics of the domain names in the network. We propose unsupervised models and evaluate their performance while comparing them with existing supervised models used in previous researches in this field. In addition, we propose a novel approach for unsupervised one-class SVM model for anomaly detection, which called Random One Class SVM (ROC-SVM). Our proposed unsupervised methods achieve better results than the compared supervised techniques, while detecting zero-day DGAs. If the run-time is of main concern, our novel approach for unsupervised one-class SVM is the best model among the others. ...
 
Keywords
rakenteeton data DGA-algoritmi botnet koneoppiminen tietoturva
URI

http://urn.fi/URN:NBN:fi:jyu-201701181180

Metadata
Show full item record
Collections
  • Pro gradu -tutkielmat [27677]

Related items

Showing items with similar title or keywords.

  • Evaluation of Ensemble Machine Learning Methods in Mobile Threat Detection 

    Kumar, Sanjay; Viinikainen, Ari; Hämäläinen, Timo (Infonomics Society, 2017)
    The rapid growing trend of mobile devices continues to soar causing massive increase in cyber security threats. Most pervasive threats include ransom-ware, banking malware, premium SMS fraud. The solitary hackers use ...
  • Unsupervised network intrusion detection systems for zero-day fast-spreading network attacks and botnets 

    Vahdani Amoli, Payam (University of Jyväskylä, 2015)
    Today, the occurrence of zero-day and complex attacks in high-speed networks is increasingly common due to the high number vulnerabilities in the cyber world. As a result, intrusions become more sophisticated and fast ...
  • A method for anomaly detection in hyperspectral images, using deep convolutional autoencoders 

    Penttilä, Jeremias (2017)
    Menetelmä poikkeavuuksien havaitsemiseen hyperspektrikuvista käyttäen syviä konvolutiivisia autoenkoodereita. Poikkeavuuksien havaitseminen kuvista, erityisesti hyperspektraalisista kuvista, on hankalaa. Kun ongelmaan ...
  • Problem Transformation Methods with Distance-Based Learning for Multi-Target Regression 

    Hämäläinen, Joonas; Kärkkäinen, Tommi (ESANN, 2020)
    Multi-target regression is a special subset of supervised machine learning problems. Problem transformation methods are used in the field to improve the performance of basic methods. The purpose of this article is to test ...
  • Piecewise anomaly detection using minimal learning machine for hyperspectral images 

    Raita-Hakola, A.-M.; Pölönen, I. (Copernicus Publications, 2021)
    Hyperspectral imaging, with its applications, offers promising tools for remote sensing and Earth observation. Recent development has increased the quality of the sensors. At the same time, the prices of the sensors are ...
  • Browse materials
  • Browse materials
  • Articles
  • Conferences and seminars
  • Electronic books
  • Historical maps
  • Journals
  • Tunes and musical notes
  • Photographs
  • Presentations and posters
  • Publication series
  • Research reports
  • Research data
  • Study materials
  • Theses

Browse

All of JYXCollection listBy Issue DateAuthorsSubjectsPublished inDepartmentDiscipline

My Account

Login

Statistics

View Usage Statistics
  • How to publish in JYX?
  • Self-archiving
  • Publish Your Thesis Online
  • Publishing Your Dissertation
  • Publish Your Data
  • Publication services

Open Science at the JYU
 
Data Protection Description

Accessibility Statement

Unless otherwise specified, publicly available JYX metadata (excluding abstracts) may be freely reused under the CC0 waiver.
Open Science Centre