Konformikuvauksista
Tarkastelen työssä konformikuvauksia, sekä niihin liittyviä tärkeitä tuloksia. Esitän Riemannin kuvauslauseen todistuksen sekä todistan Schwarzin ja Christoffelin kaavan, joka karakterisoi konformikuvaukset puolitasolta monikulmiolle. Lisäksi tarkastelen työssä konformikuvausten soveltamista muutamiin fysiikan ongelmiin virtausmekaniikan, termodynamiikan ja sähköstatiikan aloilla. In the thesis I study conformal mappings and some important results related to them. I introduce a proof for Riemann mapping theorem and prove the Schwarz-Christoffel formula, which characterizes the conformal mappings from the half plane to a polygon. In addition, I study applying the conformal mappings to some physical problems in the fields of fluid mechanics, thermodynamics, and electrostatics.
Metadata
Show full item recordCollections
- Pro gradu -tutkielmat [29589]
Related items
Showing items with similar title or keywords.
-
Pestov identities and X-ray tomography on manifolds of low regularity
Ilmavirta, Joonas; Kykkänen, Antti (American Institute of Mathematical Sciences (AIMS), 2023)We prove that the geodesic X-ray transform is injective on scalar functions and (solenoidally) on one-forms on simple Riemannian manifolds (M, g) with g ∈ C1,1. In addition to a proof, we produce a redefinition of simplicity ... -
First-order heat content asymptotics on RCD(K,N) spaces
Caputo, Emanuele; Rossi, Tommaso (Elsevier, 2024)In this paper, we prove first-order asymptotics on a bounded open set of the heat content when the ambient space is an RCD(K, N) space, under a regularity condition for the boundary that we call measured interior geodesic ... -
A quantitative second order estimate for (weighted) p-harmonic functions in manifolds under curvature-dimension condition
Liu, Jiayin; Zhang, Shijin; Zhou, Yuan (Elsevier, 2024)We build up a quantitative second-order Sobolev estimate of lnw for positive p-harmonic functions w in Riemannian manifolds under Ricci curvature bounded from below and also for positive weighted p-harmonic functions w in ... -
Pestov identities and X-ray tomography on manifolds of low regularity
Ilmavirta, Joonas; Kykkänen, Antti (American Institute of Mathematical Sciences (AIMS), 2023)We prove that the geodesic X-ray transform is injective on scalar functions and (solenoidally) on one-forms on simple Riemannian manifolds (M, g) with g ∈ C1,1. In addition to a proof, we produce a redefinition of simplicity ... -
Improved hardy inequalities on Riemannian manifolds
Mohanta, Kaushik; Tyagi, Jagmohan (Taylor & Francis, 2023)We study the following version of Hardy-type inequality on a domain Ω in a Riemannian manifold (M,g): ∫Ω|∇u|pgραdVg≥(|p−1+β|p)p∫Ω|u|p|∇ρ|pg|ρ|pραdVg+∫ΩV|u|pραdVg,∀u∈C∞c(Ω). We provide sufficient conditions on p,α,β,ρ ...