dc.contributor.author | Helske, Satu | |
dc.contributor.author | Helske, Jouni | |
dc.contributor.author | Eerola, Mervi | |
dc.contributor.editor | Ritschard, Gilbert | |
dc.contributor.editor | Studer, Matthias | |
dc.date.accessioned | 2016-08-31T10:53:52Z | |
dc.date.available | 2016-08-31T10:53:52Z | |
dc.date.issued | 2016 | |
dc.identifier.citation | Helske, S., Helske, J., & Eerola, M. (2016). Analysing Complex Life Sequence Data with Hidden Markov Modelling. In G. Ritschard, & M. Studer (Eds.), <i>LaCOSA II : Proceedings of the International Conference on Sequence Analysis and Related Methods</i> (pp. 209-240). LIVES - Swiss National Centre of Competence in Research; Swiss National Science Foundation; Université de Genevè. <a href="https://lacosa.lives-nccr.ch/sites/lacosa.lives-nccr.ch/files/proc-lacosa2-helskehelskeeerola_paper_24.pdf" target="_blank">https://lacosa.lives-nccr.ch/sites/lacosa.lives-nccr.ch/files/proc-lacosa2-helskehelskeeerola_paper_24.pdf</a> | |
dc.identifier.other | CONVID_26144449 | |
dc.identifier.uri | https://jyx.jyu.fi/handle/123456789/51143 | |
dc.description.abstract | When analysing complex sequence data with multiple channels (dimensions)
and long observation sequences, describing and visualizing the data can be
a challenge. Hidden Markov models (HMMs) and their mixtures (MHMMs) offer
a probabilistic model-based framework where the information in such data can be
compressed into hidden states (general life stages) and clusters (general patterns in
life courses).
We studied two different approaches to analysing clustered life sequence data
with sequence analysis (SA) and hidden Markov modelling. In the first approach
we used SA clusters as fixed and estimated HMMs separately for each group. In the
second approach we treated SA clusters as suggestive and used them as a starting
point for the estimation of MHMMs.
Even though the MHMM approach has advantages, we found it to be unfeasible
in this type of complex setting. Instead, using separate HMMs for SA clusters was
useful for finding and describing patterns in life courses. | |
dc.format.extent | 997 | |
dc.language.iso | eng | |
dc.publisher | LIVES - Swiss National Centre of Competence in Research; Swiss National Science Foundation; Université de Genevè | |
dc.relation.ispartof | LaCOSA II : Proceedings of the International Conference on Sequence Analysis and Related Methods | |
dc.relation.uri | https://lacosa.lives-nccr.ch/sites/lacosa.lives-nccr.ch/files/proc-lacosa2-helskehelskeeerola_paper_24.pdf | |
dc.subject.other | complex sequence data | |
dc.subject.other | Hidden Markov Modelling | |
dc.title | Analysing Complex Life Sequence Data with Hidden Markov Modelling | |
dc.type | conference paper | |
dc.identifier.urn | URN:NBN:fi:jyu-201608033721 | |
dc.contributor.laitos | Matematiikan ja tilastotieteen laitos | fi |
dc.contributor.laitos | Department of Mathematics and Statistics | en |
dc.contributor.oppiaine | Tilastotiede | fi |
dc.contributor.oppiaine | Statistics | en |
dc.type.uri | http://purl.org/eprint/type/ConferencePaper | |
dc.date.updated | 2016-08-03T09:15:03Z | |
dc.type.coar | http://purl.org/coar/resource_type/c_5794 | |
dc.description.reviewstatus | nonPeerReviewed | |
dc.format.pagerange | 209-240 | |
dc.type.version | publishedVersion | |
dc.rights.copyright | © the Authors & LIVES - Swiss National Centre of Competence in Research, Swiss National Science Foundation, Université de Genevè, 2016. | |
dc.rights.accesslevel | openAccess | fi |
dc.type.publication | conferenceObject | |
dc.relation.conference | International Conference on Sequence Analysis and Related Methods | |
dc.type.okm | D3 | |