Näytä suppeat kuvailutiedot

dc.contributor.authorHelske, Satu
dc.contributor.authorHelske, Jouni
dc.contributor.authorEerola, Mervi
dc.contributor.editorRitschard, Gilbert
dc.contributor.editorStuder, Matthias
dc.date.accessioned2016-08-31T10:53:52Z
dc.date.available2016-08-31T10:53:52Z
dc.date.issued2016
dc.identifier.citationHelske, S., Helske, J., & Eerola, M. (2016). Analysing Complex Life Sequence Data with Hidden Markov Modelling. In G. Ritschard, & M. Studer (Eds.), <i>LaCOSA II : Proceedings of the International Conference on Sequence Analysis and Related Methods</i> (pp. 209-240). LIVES - Swiss National Centre of Competence in Research; Swiss National Science Foundation; Université de Genevè. <a href="https://lacosa.lives-nccr.ch/sites/lacosa.lives-nccr.ch/files/proc-lacosa2-helskehelskeeerola_paper_24.pdf" target="_blank">https://lacosa.lives-nccr.ch/sites/lacosa.lives-nccr.ch/files/proc-lacosa2-helskehelskeeerola_paper_24.pdf</a>
dc.identifier.otherCONVID_26144449
dc.identifier.urihttps://jyx.jyu.fi/handle/123456789/51143
dc.description.abstractWhen analysing complex sequence data with multiple channels (dimensions) and long observation sequences, describing and visualizing the data can be a challenge. Hidden Markov models (HMMs) and their mixtures (MHMMs) offer a probabilistic model-based framework where the information in such data can be compressed into hidden states (general life stages) and clusters (general patterns in life courses). We studied two different approaches to analysing clustered life sequence data with sequence analysis (SA) and hidden Markov modelling. In the first approach we used SA clusters as fixed and estimated HMMs separately for each group. In the second approach we treated SA clusters as suggestive and used them as a starting point for the estimation of MHMMs. Even though the MHMM approach has advantages, we found it to be unfeasible in this type of complex setting. Instead, using separate HMMs for SA clusters was useful for finding and describing patterns in life courses.
dc.format.extent997
dc.language.isoeng
dc.publisherLIVES - Swiss National Centre of Competence in Research; Swiss National Science Foundation; Université de Genevè
dc.relation.ispartofLaCOSA II : Proceedings of the International Conference on Sequence Analysis and Related Methods
dc.relation.urihttps://lacosa.lives-nccr.ch/sites/lacosa.lives-nccr.ch/files/proc-lacosa2-helskehelskeeerola_paper_24.pdf
dc.subject.othercomplex sequence data
dc.subject.otherHidden Markov Modelling
dc.titleAnalysing Complex Life Sequence Data with Hidden Markov Modelling
dc.typeconference paper
dc.identifier.urnURN:NBN:fi:jyu-201608033721
dc.contributor.laitosMatematiikan ja tilastotieteen laitosfi
dc.contributor.laitosDepartment of Mathematics and Statisticsen
dc.contributor.oppiaineTilastotiedefi
dc.contributor.oppiaineStatisticsen
dc.type.urihttp://purl.org/eprint/type/ConferencePaper
dc.date.updated2016-08-03T09:15:03Z
dc.type.coarhttp://purl.org/coar/resource_type/c_5794
dc.description.reviewstatusnonPeerReviewed
dc.format.pagerange209-240
dc.type.versionpublishedVersion
dc.rights.copyright© the Authors & LIVES - Swiss National Centre of Competence in Research, Swiss National Science Foundation, Université de Genevè, 2016.
dc.rights.accesslevelopenAccessfi
dc.type.publicationconferenceObject
dc.relation.conferenceInternational Conference on Sequence Analysis and Related Methods
dc.type.okmD3


Aineistoon kuuluvat tiedostot

Thumbnail

Aineisto kuuluu seuraaviin kokoelmiin

Näytä suppeat kuvailutiedot