Combining Sequence Analysis and Hidden Markov Models in the Analysis of Complex Life Sequence Data
Helske, S., Helske, J., & Eerola, M. (2018). Combining Sequence Analysis and Hidden Markov Models in the Analysis of Complex Life Sequence Data. In G. Ritschard, & M. Studer (Eds.), Sequence Analysis and Related Approaches : Innovative Methods and Applications (pp. 185-200). Springer. Life Course Research and Social Policies, 10. https://doi.org/10.1007/978-3-319-95420-2_11
Julkaistu sarjassa
Life Course Research and Social PoliciesPäivämäärä
2018Tekijänoikeudet
© 2018 the Authors
Life course data often consists of multiple parallel sequences, one for each life domain of interest. Multichannel sequence analysis has been used for computing pairwise dissimilarities and finding clusters in this type of multichannel (or multidimensional) sequence data. Describing and visualizing such data is, however, often challenging. We propose an approach for compressing, interpreting, and visualizing the information within multichannel sequences by finding (1) groups of similar trajectories and (2) similar phases within trajectories belonging to the same group. For these tasks we combine multichannel sequence analysis and hidden Markov modelling. We illustrate this approach with an empirical application to life course data but the proposed approach can be useful in various longitudinal problems.
Julkaisija
SpringerEmojulkaisun ISBN
978-3-319-95419-6Kuuluu julkaisuun
Sequence Analysis and Related Approaches : Innovative Methods and ApplicationsISSN Hae Julkaisufoorumista
2211-7776Asiasanat
Julkaisu tutkimustietojärjestelmässä
https://converis.jyu.fi/converis/portal/detail/Publication/28670145
Metadata
Näytä kaikki kuvailutiedotKokoelmat
Lisenssi
Samankaltainen aineisto
Näytetään aineistoja, joilla on samankaltainen nimeke tai asiasanat.
-
Statistical analysis of life sequence data
Helske, Satu (University of Jyväskylä, 2016) -
Unbiased Inference for Discretely Observed Hidden Markov Model Diffusions
Chada, Neil K.; Franks, Jordan; Jasra, Ajay; Law, Kody J.; Vihola, Matti (Society for Industrial & Applied Mathematics (SIAM), 2021)We develop a Bayesian inference method for diffusions observed discretely and with noise, which is free of discretization bias. Unlike existing unbiased inference methods, our method does not rely on exact simulation ... -
The algorithmic nature of song-sequencing : statistical regularities in music albums
Neto, Pedro A. S. O.; Hartmann, Martin; Luck, Geoff; Toiviainen, Petri (Taylor & Francis, Informa, 2024)Based on a review of anecdotal beliefs, we explored statistical patterns of track-sequencing within a large set of released music albums. We found that songs with high levels of valence, energy and loudness are more likely ... -
Cluster priors in the Bayesian modelling of fMRI data
Taskinen, Ilkka (University of Jyväskylä, 2001) -
Importance sampling type estimators based on approximate marginal Markov chain Monte Carlo
Vihola, Matti; Helske, Jouni; Franks, Jordan (Wiley-Blackwell, 2020)We consider importance sampling (IS) type weighted estimators based on Markov chain Monte Carlo (MCMC) targeting an approximate marginal of the target distribution. In the context of Bayesian latent variable models, the ...
Ellei toisin mainittu, julkisesti saatavilla olevia JYX-metatietoja (poislukien tiivistelmät) saa vapaasti uudelleenkäyttää CC0-lisenssillä.