Show simple item record

dc.contributor.authorTuovinen, Riku
dc.contributor.authorSäkkinen, Niko
dc.contributor.authorKarlsson, Daniel
dc.contributor.authorStefanucci, Gianluca
dc.contributor.authorvan Leeuwen, Robert
dc.date.accessioned2016-07-12T10:42:28Z
dc.date.available2016-07-12T10:42:28Z
dc.date.issued2016
dc.identifier.citationTuovinen, R., Säkkinen, N., Karlsson, D., Stefanucci, G., & van Leeuwen, R. (2016). Phononic heat transport in the transient regime: An analytic solution. <i>Physical Review B</i>, <i>93</i>(21), Article 214301. <a href="https://doi.org/10.1103/PhysRevB.93.214301" target="_blank">https://doi.org/10.1103/PhysRevB.93.214301</a>
dc.identifier.otherCONVID_26113220
dc.identifier.otherTUTKAID_70633
dc.identifier.urihttps://jyx.jyu.fi/handle/123456789/50803
dc.description.abstractWe investigate the time-resolved quantum transport properties of phonons in arbitrary harmonic systems connected to phonon baths at different temperatures. We obtain a closed analytic expression of the time-dependent one-particle reduced density matrix by explicitly solving the equations of motion for the nonequilibrium Green’s function. This is achieved through a well-controlled approximation of the frequency-dependent bath self-energy. Our result allows for exploring transient oscillations and relaxation times of local heat currents, and correctly reduces to an earlier known result in the steady-state limit. We apply the formalism to atomic chains, and benchmark the validity of the approximation against full numerical solutions of the bosonic Kadanoff-Baym equations for the Green’s function. We find good agreement between the analytic and numerical solutions for weak contacts and baths with a wide energy dispersion. We further analyze relaxation times from low to high temperature gradients.
dc.language.isoeng
dc.publisherAmerican Physical Society
dc.relation.ispartofseriesPhysical Review B
dc.subject.otherquantum transport
dc.subject.otherheat transport
dc.titlePhononic heat transport in the transient regime: An analytic solution
dc.typearticle
dc.identifier.urnURN:NBN:fi:jyu-201607123576
dc.contributor.laitosFysiikan laitosfi
dc.contributor.laitosDepartment of Physicsen
dc.contributor.oppiaineNanoscience Centerfi
dc.contributor.oppiaineNanoscience Centeren
dc.type.urihttp://purl.org/eprint/type/JournalArticle
dc.date.updated2016-07-12T09:15:11Z
dc.type.coarhttp://purl.org/coar/resource_type/c_2df8fbb1
dc.description.reviewstatuspeerReviewed
dc.relation.issn1098-0121
dc.relation.numberinseries21
dc.relation.volume93
dc.type.versionpublishedVersion
dc.rights.copyright© 2016 American Physical Society. Published in this repository with the kind permission of the publisher.
dc.rights.accesslevelopenAccessfi
dc.relation.grantnumber267839
dc.subject.ysofononit
jyx.subject.urihttp://www.yso.fi/onto/yso/p28089
dc.relation.doi10.1103/PhysRevB.93.214301
dc.relation.funderSuomen Akatemiafi
dc.relation.funderAcademy of Finlanden
jyx.fundingprogramAkatemiahanke, SAfi
jyx.fundingprogramAcademy Project, AoFen
jyx.fundinginformationWe thank the Vilho, Yrjo and Kalle V ¨ ais ¨ al¨ a Foundation, the Academy of Finland (Grant No. 267839), MIUR FIRB Grant No. RBFR12SW0, and EC funding through the RISE Co- ExAN (GA644076) for financial support. We further wish to acknowledge CSC–IT Center for Science, Finland, for computational resources.
dc.type.okmA1


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record