A posteriori error estimates for a Maxwell type problem
Anjam, I., Mali, O., Muzalevsky, A., Neittaanmäki, P., & Repin, S. (2009). A posteriori error estimates for a Maxwell type problem. Russian Journal of Numerical Analysis and Mathematical Modelling, 24(5), 395-408. https://doi.org/10.1515/RJNAMM.2009.025
Julkaistu sarjassa
Russian Journal of Numerical Analysis and Mathematical ModellingPäivämäärä
2009Tekijänoikeudet
© de Gruyter 2009. Published in this repository with the kind permission of the publisher.
2016:19 | 2017:129 | 2018:195 | 2019:98 | 2020:49 | 2021:58 | 2022:34 | 2023:56 | 2024:60 | 2025:4
In this paper, we discuss a posteriori estimates for the Maxwell type boundary-value
problem. The estimates are derived by transformations of integral identities that define the generalized
solution and are valid for any conforming approximation of the exact solution. It is proved analytically
and confirmed numerically that the estimates indeed provide a computable and guaranteed bound of
approximation errors. Also, it is shown that the estimates imply robust error indicators that represent
the distribution of local (inter-element) errors measured in terms of different norms.
Julkaisija
Walter de Gruyter GmbHISSN Hae Julkaisufoorumista
0927-6467Julkaisu tutkimustietojärjestelmässä
https://converis.jyu.fi/converis/portal/detail/Publication/19198889
Metadata
Näytä kaikki kuvailutiedotKokoelmat
Samankaltainen aineisto
Näytetään aineistoja, joilla on samankaltainen nimeke tai asiasanat.
-
A posteriori error control for Maxwell and elliptic type problems
Anjam, Immanuel (University of Jyväskylä, 2014) -
On the convergence of the finite element approximation of eigenfrequencies and eigenvectors to Maxwell's boundary value problem
Neittaanmäki, Pekka; Picard, Rainer (Suomalainen tiedeakatemia, 1981) -
Generalized Maxwell equations in exterior domains 2, Radiation problems and low frequency behavior
Pauly, Dirk (University of Jyväskylä, 2007) -
Partial data inverse problems for Maxwell equations via Carleman estimates
Chung, Francis J.; Ola, Petri; Salo, Mikko; Tzou, Leo (Elsevier, 2018)In this article we consider an inverse boundary value problem for the time-harmonic Maxwell equations. We show that the electromagnetic material parameters are determined by boundary measurements where part of the boundary ... -
Fully reliable a posteriori error control for evolutionary problems
Matculevich, Svetlana (University of Jyväskylä, 2015)
Ellei toisin mainittu, julkisesti saatavilla olevia JYX-metatietoja (poislukien tiivistelmät) saa vapaasti uudelleenkäyttää CC0-lisenssillä.