Show simple item record

dc.contributor.authorAho, Vesa
dc.contributor.authorMattila, Keijo
dc.contributor.authorKühn, Thomas
dc.contributor.authorKekäläinen, Pekka
dc.contributor.authorPulkkinen, Otto
dc.contributor.authorMinussi, Roberta Brondani
dc.contributor.authorVihinen-Ranta, Maija
dc.contributor.authorTimonen, Jussi
dc.date.accessioned2016-06-03T11:02:26Z
dc.date.available2016-06-03T11:02:26Z
dc.date.issued2016
dc.identifier.citationAho, V., Mattila, K., Kühn, T., Kekäläinen, P., Pulkkinen, O., Minussi, R. B., Vihinen-Ranta, M., & Timonen, J. (2016). Diffusion through thin membranes: Modeling across scales. <i>Physical Review E</i>, <i>93</i>(4), Article 043309. <a href="https://doi.org/10.1103/PhysRevE.93.043309" target="_blank">https://doi.org/10.1103/PhysRevE.93.043309</a>
dc.identifier.otherCONVID_25683024
dc.identifier.urihttps://jyx.jyu.fi/handle/123456789/50095
dc.description.abstractFrom macroscopic to microscopic scales it is demonstrated that diffusion through membranes can be modeled using specific boundary conditions across them. The membranes are here considered thin in comparison to the overall size of the system. In a macroscopic scale the membrane is introduced as a transmission boundary condition, which enables an effective modeling of systems that involve multiple scales. In a mesoscopic scale, a numerical lattice-Boltzmann scheme with a partial-bounceback condition at the membrane is proposed and analyzed. It is shown that this mesoscopic approach provides a consistent approximation of the transmission boundary condition. Furthermore, analysis of the mesoscopic scheme gives rise to an expression for the permeability of a thin membrane as a function of a mesoscopic transmission parameter. In a microscopic model, the mean waiting time for a passage of a particle through the membrane is in accordance with this permeability. Numerical results computed with the mesoscopic scheme are then compared successfully with analytical solutions derived in a macroscopic scale, and the membrane model introduced here is used to simulate diffusive transport between the cell nucleus and cytoplasm through the nuclear envelope in a realistic cell model based on fluorescence microscopy data. By comparing the simulated fluorophore transport to the experimental one, we determine the permeability of the nuclear envelope of HeLa cells to enhanced yellow fluorescent protein.
dc.language.isoeng
dc.publisherAmerican Physical Society
dc.relation.ispartofseriesPhysical Review E
dc.subject.otherthin membranes
dc.subject.othertransmission boundary condition
dc.subject.othernumerical lattice-Boltzmann scheme
dc.subject.othernuclear envelope
dc.titleDiffusion through thin membranes: Modeling across scales
dc.typeresearch article
dc.identifier.urnURN:NBN:fi:jyu-201606032843
dc.contributor.laitosBio- ja ympäristötieteiden laitosfi
dc.contributor.laitosFysiikan laitosfi
dc.contributor.laitosDepartment of Biological and Environmental Scienceen
dc.contributor.laitosDepartment of Physicsen
dc.contributor.oppiaineSolu- ja molekyylibiologiafi
dc.contributor.oppiaineNanoscience Centerfi
dc.contributor.oppiaineCell and Molecular Biologyen
dc.contributor.oppiaineNanoscience Centeren
dc.type.urihttp://purl.org/eprint/type/JournalArticle
dc.date.updated2016-06-03T09:15:13Z
dc.type.coarhttp://purl.org/coar/resource_type/c_2df8fbb1
dc.description.reviewstatuspeerReviewed
dc.relation.issn1539-3755
dc.relation.numberinseries4
dc.relation.volume93
dc.type.versionpublishedVersion
dc.rights.copyright© 2016 American Physical Society. Published in this repository with the kind permission of the publisher.
dc.rights.accesslevelopenAccessfi
dc.type.publicationarticle
dc.subject.ysodiffuusio (fysikaaliset ilmiöt)
dc.subject.ysoläpäisevyys
dc.subject.ysotuma
jyx.subject.urihttp://www.yso.fi/onto/yso/p18009
jyx.subject.urihttp://www.yso.fi/onto/yso/p19404
jyx.subject.urihttp://www.yso.fi/onto/yso/p2411
dc.relation.doi10.1103/PhysRevE.93.043309
dc.type.okmA1


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record