University of Jyväskylä | JYX Digital Repository

  • English  | Give feedback |
    • suomi
    • English
 
  • Login
JavaScript is disabled for your browser. Some features of this site may not work without it.
View Item 
  • JYX
  • Artikkelit
  • Matemaattis-luonnontieteellinen tiedekunta
  • View Item
JYX > Artikkelit > Matemaattis-luonnontieteellinen tiedekunta > View Item

Asymptotic behaviors of solutions to quasilinear elliptic equations with Hardy potential

ThumbnailFinal Draft
View/Open
408.8 Kb

Downloads:  
Show download detailsHide download details  
He, C.-J., & Xiang, C. (2016). Asymptotic behaviors of solutions to quasilinear elliptic equations with Hardy potential. Journal of Mathematical Analysis and Applications, 441(1), 211-234. https://doi.org/10.1016/j.jmaa.2016.03.082
Published in
Journal of Mathematical Analysis and Applications
Authors
He, Cheng-Jun |
Xiang, Changlin
Date
2016
Discipline
MatematiikkaMathematics
Copyright
© 2016 Elsevier Inc. This is a final draft version of an article whose final and definitive form has been published by Elsevier. Published in this repository with the kind permission of the publisher.

 
Optimal estimates on asymptotic behaviors of weak solutions both at the origin and at the infinity are obtained to the following quasilinear elliptic equations −Δpu − μ |x| p |u| p−2 u + m|u| p−2 u = f(u), x ∈ RN , where 1 0 and f is a continuous function.
Publisher
Academic Press
ISSN Search the Publication Forum
0022-247X
Keywords
Quasilinear elliptic equations Hardy's inequality Asymptotic behaviors Comparison principle
DOI
https://doi.org/10.1016/j.jmaa.2016.03.082
URI

http://urn.fi/URN:NBN:fi:jyu-201604272336

Publication in research information system

https://converis.jyu.fi/converis/portal/detail/Publication/25646910

Metadata
Show full item record
Collections
  • Matemaattis-luonnontieteellinen tiedekunta [4977]

Related items

Showing items with similar title or keywords.

  • Regularity of quasilinear sub-elliptic equations in the Heisenberg group 

    Mukherjee, Shirsho (University of Jyväskylä, 2018)
  • Convergence of dynamic programming principles for the p-Laplacian 

    del Teso, Félix; Manfredi, Juan J.; Parviainen, Mikko (De Gruyter, 2022)
    We provide a unified strategy to show that solutions of dynamic programming principles associated to the p-Laplacian converge to the solution of the corresponding Dirichlet problem. Our approach includes all previously ...
  • Determining an unbounded potential for an elliptic equation with a power type nonlinearity 

    Nurminen, Janne (Elsevier, 2023)
    In this article we focus on inverse problems for a semilinear elliptic equation. We show that a potential q in Ln/2+ε, ε > 0, can be determined from the full and partial Dirichlet-to-Neumann map. This extends the results ...
  • Riesz and Wolff potentials and elliptic equations in variable exponent weak Lebesgue spaces 

    Almeida, A.; Harjulehto, P.; Hästö, P.; Lukkari, Teemu (Springer, 2015)
    We prove optimal integrability results for solutions of the p(·)-Laplace equation in the scale of (weak) Lebesgue spaces. To obtain this, we show that variable exponent Riesz and Wolff potentials map L 1 to variable ...
  • What is behind a software acquisition process? : empirical case study focusing on Finnish IT Service Provider and its potential customers 

    Kuorelahti, Topi (2018)
    Teknologiset innovaatiot ja niiden myötä muuttuva liiketoimintaympäristö ovat johtaneet siihen, että erilaisten digitaalisten toimintatapojen ja työkalujen käyttö erityisesti yritysten välisillä (Business-to-Business, B2B) ...
  • Browse materials
  • Browse materials
  • Articles
  • Conferences and seminars
  • Electronic books
  • Historical maps
  • Journals
  • Tunes and musical notes
  • Photographs
  • Presentations and posters
  • Publication series
  • Research reports
  • Research data
  • Study materials
  • Theses

Browse

All of JYXCollection listBy Issue DateAuthorsSubjectsPublished inDepartmentDiscipline

My Account

Login

Statistics

View Usage Statistics
  • How to publish in JYX?
  • Self-archiving
  • Publish Your Thesis Online
  • Publishing Your Dissertation
  • Publication services

Open Science at the JYU
 
Data Protection Description

Accessibility Statement

Unless otherwise specified, publicly available JYX metadata (excluding abstracts) may be freely reused under the CC0 waiver.
Open Science Centre