Geometry and quasisymmetric parametrization of Semmes spaces
Pankka, P., & Wu, J.-M. (2014). Geometry and quasisymmetric parametrization of Semmes spaces. Revista matematica Iberoamericana, 30(3), 893-960. https://doi.org/10.4171/rmi/802
Julkaistu sarjassa
Revista matematica IberoamericanaPäivämäärä
2014Tekijänoikeudet
© 2014 European Mathematical Society. This is a final draft version of an article whose final and definitive form has been published by EMS. Published in this repository with the kind permission of the publisher.
We consider decomposition spaces R
3
/G that are manifold
factors and admit defining sequences consisting of cubes-with-handles
of finite type. Metrics on R
3
/G constructed via modular embeddings
of R
3
/G into a Euclidean space promote the controlled topology to a
controlled geometry.
The quasisymmetric parametrizability of the metric space R
3
/G×R
m
by R
3+m for any m ≥ 0 imposes quantitative topological constraints, in
terms of the circulation and the growth of the cubes-with-handles, on
the defining sequences for R
3
/G. We give a necessary condition and a
sufficient condition for the existence of such a parametrization.
The necessary condition answers negatively a question of Heinonen
and Semmes on quasisymmetric parametrizability of spaces associated
to the Bing double. The sufficient condition gives new examples of
quasispheres in S
4
.
Julkaisija
European Mathematical Society Publishing House; Real Sociedad Matematica EspanolaISSN Hae Julkaisufoorumista
0213-2230Julkaisu tutkimustietojärjestelmässä
https://converis.jyu.fi/converis/portal/detail/Publication/24024378
Metadata
Näytä kaikki kuvailutiedotKokoelmat
Samankaltainen aineisto
Näytetään aineistoja, joilla on samankaltainen nimeke tai asiasanat.
-
Fast Implementation of Double-coupled Nonnegative Canonical Polyadic Decomposition
Wang, Xiulin; Ristaniemi, Tapani; Cong, Fengyu (IEEE, 2019)Real-world data exhibiting high order/dimensionality and various couplings are linked to each other since they share some common characteristics. Coupled tensor decomposition has become a popular technique for group ... -
Pestov identities and X-ray tomography on manifolds of low regularity
Ilmavirta, Joonas; Kykkänen, Antti (American Institute of Mathematical Sciences (AIMS), 2023)We prove that the geodesic X-ray transform is injective on scalar functions and (solenoidally) on one-forms on simple Riemannian manifolds (M, g) with g ∈ C1,1. In addition to a proof, we produce a redefinition of simplicity ... -
Tensor Tomography on Negatively Curved Manifolds of Low Regularity
Ilmavirta, Joonas; Kykkänen, Antti (Springer, 2024)We prove solenoidal injectivity for the geodesic X-ray transform of tensor fields on simple Riemannian manifolds with C1,1 metrics and non-positive sectional curvature. The proof of the result rests on Pestov energy estimates ... -
Pestov identities and X-ray tomography on manifolds of low regularity
Ilmavirta, Joonas; Kykkänen, Antti (American Institute of Mathematical Sciences (AIMS), 2023)We prove that the geodesic X-ray transform is injective on scalar functions and (solenoidally) on one-forms on simple Riemannian manifolds (M, g) with g ∈ C1,1. In addition to a proof, we produce a redefinition of simplicity ... -
Lipschitz Carnot-Carathéodory Structures and their Limits
Antonelli, Gioacchino; Le Donne, Enrico; Nicolussi Golo, Sebastiano (Springer Science and Business Media LLC, 2023)In this paper we discuss the convergence of distances associated to converging structures of Lipschitz vector fields and continuously varying norms on a smooth manifold. We prove that, under a mild controllability assumption ...
Ellei toisin mainittu, julkisesti saatavilla olevia JYX-metatietoja (poislukien tiivistelmät) saa vapaasti uudelleenkäyttää CC0-lisenssillä.