Quasiadditivity of Variational Capacity
Lehrbäck, J., & Shanmugalingam, N. (2014). Quasiadditivity of Variational Capacity. Potential Analysis, 40(3), 247-265. https://doi.org/10.1007/s11118-013-9348-7
Julkaistu sarjassa
Potential AnalysisPäivämäärä
2014Tekijänoikeudet
© Springer Science+Business Media Dordrecht 2013. This is a final draft version of an article whose final and definitive form has been published by Springer. Published in this repository with the kind permission of the publisher.
We study the quasiadditivity property (a version of superadditivity with a multiplicative constant) of variational capacity in metric spaces with respect to Whitney type covers. We characterize this property in terms of a Mazya type capacity condition, and also explore the close relation between quasiadditivity and Hardy’s inequality.
Julkaisija
Springer NetherlandsISSN Hae Julkaisufoorumista
0926-2601Asiasanat
Alkuperäislähde
http://link.springer.com/article/10.1007%2Fs11118-013-9348-7Julkaisu tutkimustietojärjestelmässä
https://converis.jyu.fi/converis/portal/detail/Publication/23634257
Metadata
Näytä kaikki kuvailutiedotKokoelmat
Samankaltainen aineisto
Näytetään aineistoja, joilla on samankaltainen nimeke tai asiasanat.
-
The annular decay property and capacity estimates for thin annuli
Björn, Anders; Björn, Jana; Lehrbäck, Juha (Springer Italia Srl; Universitat de Barcelona, 2017) -
Marketing communication metrics for social media
Töllinen, Aarne; Karjaluoto, Heikki (Inderscience Publishers, 2011)The objective of this paper is to develop a conceptual framework for measuring the effectiveness of social media marketing communications. Specifically, we study whether the existing marketing communications performance ... -
Systematic implementation of higher order Whitney forms in methods based on discrete exterior calculus
Lohi, Jonni (Springer, 2022)We present a systematic way to implement higher order Whitney forms in numerical methods based on discrete exterior calculus. Given a simplicial mesh, we first refine the mesh into smaller simplices which can be used to ... -
Whitney forms and their extensions
Lohi, Jonni; Kettunen, Lauri (Elsevier, 2021)Whitney forms are widely known as finite elements for differential forms. Whitney’s original definition yields first order functions on simplicial complexes, and a lot of research has been devoted to extending the definition ... -
Generalized finite difference schemes with higher order Whitney forms
Kettunen, Lauri; Lohi, Jonni; Räbinä, Jukka; Mönkölä, Sanna; Rossi, Tuomo (EDP Sciences, 2021)Finite difference kind of schemes are popular in approximating wave propagation problems in finite dimensional spaces. While Yee’s original paper on the finite difference method is already from the sixties, mathematically ...
Ellei toisin mainittu, julkisesti saatavilla olevia JYX-metatietoja (poislukien tiivistelmät) saa vapaasti uudelleenkäyttää CC0-lisenssillä.