Top-down effects of a lytic bacteriophage and protozoa on bacteria in aqueous and biofilm phases
Zhang, J., Örmälä, A.-M., Mappes, J., & Laakso, J. (2014). Top-down effects of a lytic bacteriophage and protozoa on bacteria in aqueous and biofilm phases. Ecology and Evolution, 4(23), 4444-4453. https://doi.org/10.1002/ece3.1302
Published in
Ecology and EvolutionDate
2014Discipline
Ekologia ja evoluutiobiologiaSolu- ja molekyylibiologiaBiologisten vuorovaikutusten huippututkimusyksikköEcology and Evolutionary BiologyCell and Molecular BiologyCentre of Excellence in Biological Interactions ResearchCopyright
© 2014 The Authors. Ecology and Evolution published by John Wiley & Sons Ltd.
This is an open access article under the terms of the Creative Commons Attribution License, which permits use,
distribution and reproduction in any medium, provided the original work is properly cited.
Lytic bacteriophages and protozoan predators are the major causes of bacterial mortality in natural microbial communities, which also makes them potential candidates for biological control of bacterial pathogens. However, little is known about the relative impact of bacteriophages and protozoa on the dynamics of bacterial biomass in aqueous and biofilm phases. Here, we studied the temporal and spatial dynamics of bacterial biomass in a microcosm experiment where opportunistic pathogenic bacteria Serratia marcescens was exposed to particle‐feeding ciliates, surface‐feeding amoebas, and lytic bacteriophages for 8 weeks, ca. 1300 generations. We found that ciliates were the most efficient enemy type in reducing bacterial biomass in the open water, but least efficient in reducing the biofilm biomass. Biofilm was rather resistant against bacterivores, but amoebae had a significant long‐term negative effect on bacterial biomass both in the open‐water phase and biofilm. Bacteriophages had only a minor long‐term effect on bacterial biomass in open‐water and biofilm phases. However, separate short‐term experiments with the ancestral bacteriophages and bacteria revealed that bacteriophages crash the bacterial biomass dramatically in the open‐water phase within the first 24 h. Thereafter, the bacteria evolve phage‐resistance that largely prevents top‐down effects. The combination of all three enemy types was most effective in reducing biofilm biomass, whereas in the open‐water phase the ciliates dominated the trophic effects. Our results highlight the importance of enemy feeding mode on determining the spatial distribution and abundance of bacterial biomass. Moreover, the enemy type can be crucially important predictor of whether the rapid defense evolution can significantly affect top‐down regulation of bacteria.
...
Publisher
John Wiley & Sons Ltd.ISSN Search the Publication Forum
2045-7758Keywords
Publication in research information system
https://converis.jyu.fi/converis/portal/detail/Publication/24421098
Metadata
Show full item recordCollections
Additional information about funding
Academy of Finland. Grant Numbers: #1130724, #1255572. Centre of Excellence in Biological Interactions 2012‐2017. Grant Number: #252411. Finnish Cultural Foundation Biological Interactions Graduate School (BIOINT). Ellen and Artturi Nyyssönen Foundation.License
Except where otherwise noted, this item's license is described as © 2014 The Authors. Ecology and Evolution published by John Wiley & Sons Ltd.
This is an open access article under the terms of the Creative Commons Attribution License, which permits use,
distribution and reproduction in any medium, provided the original work is properly cited.
Related items
Showing items with similar title or keywords.
-
Predation on Multiple Trophic Levels Shapes the Evolution of Pathogen Virulence
Friman, Ville-Petri; Lindstedt, Carita; Laakso, Jouni; Mappes, Johanna (Public Library of Science, 2009)The pathogen virulence is traditionally thought to co-evolve as a result of reciprocal selection with its host organism. In natural communities, pathogens and hosts are typically embedded within a web of interactions with ... -
Ravintoresurssin ajallisen vaihtelun vaikutus saaliin (Serratia marcescens -bakteeri) ja pedon (Tetrahymena thermophila -alkueläin) evolutiiviseen ja ekologiseen dynamiikkaan
Koivu, Maija (2010)Resurssit ovat yksi tärkeimmistä eliöiden evoluutioon vaikuttavista ympäristötekijöistä. Esimerkiksi eliöiden kyky kilpailla ja puolustautua voivat kehittyä erilailla ravintoympäristöstä ja sen muutoksista riippuen: hyvä ... -
Virulence evolution and immune defence : pathogen-host interactions between an environmentally transmitted bacterium Serratia marcescens and its insect hosts
Mikonranta, Lauri (University of Jyväskylä, 2015) -
Interactive effects between diet and genotypes of host and pathogen define the severity of infection
Zhang, Ji; Friman, Ville-Petri; Laakso, Jouni; Mappes, Johanna (Wiley-Blackwell, 2012)Host resistance and parasite virulence are influenced by multiple interacting factors in complex natural communities. Yet, these interactive effects are seldom studied concurrently, resulting in poor understanding of ...