dc.contributor.author | Ambrosio, Luigi | |
dc.contributor.author | Rajala, Tapio | |
dc.date.accessioned | 2015-08-21T06:53:57Z | |
dc.date.available | 2015-08-21T06:53:57Z | |
dc.date.issued | 2014 | |
dc.identifier.citation | Ambrosio, L., & Rajala, T. (2014). Slopes of Kantorovich potentials and existence of optimal transport maps in metric measure spaces. <i>Annali di Matematica Pura ed Applicata</i>, <i>193</i>(1), 71-87. <a href="https://doi.org/10.1007/s10231-012-0266-x" target="_blank">https://doi.org/10.1007/s10231-012-0266-x</a> | |
dc.identifier.other | CONVID_23582669 | |
dc.identifier.uri | https://jyx.jyu.fi/handle/123456789/46663 | |
dc.description.abstract | We study optimal transportation with the quadratic cost function
in geodesic metric spaces satisfying suitable non-branching assumptions. We
introduce and study the notions of slope along curves and along geodesics and
we apply the latter to prove suitable generalizations of Brenier’s theorem of
existence of optimal maps. | |
dc.language.iso | eng | |
dc.publisher | Springer | |
dc.relation.ispartofseries | Annali di Matematica Pura ed Applicata | |
dc.relation.uri | http://link.springer.com/article/10.1007%2Fs10231-012-0266-x | |
dc.subject.other | optimal transportation | |
dc.subject.other | geodesic metric space | |
dc.subject.other | non-brancing | |
dc.subject.other | upper gradient | |
dc.title | Slopes of Kantorovich potentials and existence of optimal transport maps in metric measure spaces | |
dc.type | research article | |
dc.identifier.urn | URN:NBN:fi:jyu-201508182694 | |
dc.contributor.laitos | Matematiikan ja tilastotieteen laitos | fi |
dc.contributor.laitos | Department of Mathematics and Statistics | en |
dc.contributor.oppiaine | Matematiikka | fi |
dc.contributor.oppiaine | Mathematics | en |
dc.type.uri | http://purl.org/eprint/type/JournalArticle | |
dc.date.updated | 2015-08-18T09:15:12Z | |
dc.type.coar | http://purl.org/coar/resource_type/c_2df8fbb1 | |
dc.description.reviewstatus | peerReviewed | |
dc.format.pagerange | 71-87 | |
dc.relation.issn | 0373-3114 | |
dc.relation.numberinseries | 1 | |
dc.relation.volume | 193 | |
dc.type.version | acceptedVersion | |
dc.rights.copyright | © Fondazione Annali di Matematica Pura ed Applicata and Springer-Verlag 2012. This is a final draft version of an article whose final and definitive form has been published by Springer. Published in this repository with the kind permission of the publisher. | |
dc.rights.accesslevel | openAccess | fi |
dc.type.publication | article | |
dc.relation.doi | 10.1007/s10231-012-0266-x | |
dc.type.okm | A1 | |