Näytä suppeat kuvailutiedot

dc.contributor.authorAmbrosio, Luigi
dc.contributor.authorRajala, Tapio
dc.date.accessioned2015-08-21T06:53:57Z
dc.date.available2015-08-21T06:53:57Z
dc.date.issued2014
dc.identifier.citationAmbrosio, L., & Rajala, T. (2014). Slopes of Kantorovich potentials and existence of optimal transport maps in metric measure spaces. <i>Annali di Matematica Pura ed Applicata</i>, <i>193</i>(1), 71-87. <a href="https://doi.org/10.1007/s10231-012-0266-x" target="_blank">https://doi.org/10.1007/s10231-012-0266-x</a>
dc.identifier.otherCONVID_23582669
dc.identifier.urihttps://jyx.jyu.fi/handle/123456789/46663
dc.description.abstractWe study optimal transportation with the quadratic cost function in geodesic metric spaces satisfying suitable non-branching assumptions. We introduce and study the notions of slope along curves and along geodesics and we apply the latter to prove suitable generalizations of Brenier’s theorem of existence of optimal maps.
dc.language.isoeng
dc.publisherSpringer
dc.relation.ispartofseriesAnnali di Matematica Pura ed Applicata
dc.relation.urihttp://link.springer.com/article/10.1007%2Fs10231-012-0266-x
dc.subject.otheroptimal transportation
dc.subject.othergeodesic metric space
dc.subject.othernon-brancing
dc.subject.otherupper gradient
dc.titleSlopes of Kantorovich potentials and existence of optimal transport maps in metric measure spaces
dc.typeresearch article
dc.identifier.urnURN:NBN:fi:jyu-201508182694
dc.contributor.laitosMatematiikan ja tilastotieteen laitosfi
dc.contributor.laitosDepartment of Mathematics and Statisticsen
dc.contributor.oppiaineMatematiikkafi
dc.contributor.oppiaineMathematicsen
dc.type.urihttp://purl.org/eprint/type/JournalArticle
dc.date.updated2015-08-18T09:15:12Z
dc.type.coarhttp://purl.org/coar/resource_type/c_2df8fbb1
dc.description.reviewstatuspeerReviewed
dc.format.pagerange71-87
dc.relation.issn0373-3114
dc.relation.numberinseries1
dc.relation.volume193
dc.type.versionacceptedVersion
dc.rights.copyright© Fondazione Annali di Matematica Pura ed Applicata and Springer-Verlag 2012. This is a final draft version of an article whose final and definitive form has been published by Springer. Published in this repository with the kind permission of the publisher.
dc.rights.accesslevelopenAccessfi
dc.type.publicationarticle
dc.relation.doi10.1007/s10231-012-0266-x
dc.type.okmA1


Aineistoon kuuluvat tiedostot

Thumbnail

Aineisto kuuluu seuraaviin kokoelmiin

Näytä suppeat kuvailutiedot