Slopes of Kantorovich potentials and existence of optimal transport maps in metric measure spaces
Ambrosio, L., & Rajala, T. (2014). Slopes of Kantorovich potentials and existence of optimal transport maps in metric measure spaces. Annali di Matematica Pura ed Applicata, 193(1), 71-87. https://doi.org/10.1007/s10231-012-0266-x
Julkaistu sarjassa
Annali di Matematica Pura ed ApplicataPäivämäärä
2014Tekijänoikeudet
© Fondazione Annali di Matematica Pura ed Applicata and Springer-Verlag 2012. This is a final draft version of an article whose final and definitive form has been published by Springer. Published in this repository with the kind permission of the publisher.
We study optimal transportation with the quadratic cost function
in geodesic metric spaces satisfying suitable non-branching assumptions. We
introduce and study the notions of slope along curves and along geodesics and
we apply the latter to prove suitable generalizations of Brenier’s theorem of
existence of optimal maps.
Julkaisija
SpringerISSN Hae Julkaisufoorumista
0373-3114
Alkuperäislähde
http://link.springer.com/article/10.1007%2Fs10231-012-0266-xJulkaisu tutkimustietojärjestelmässä
https://converis.jyu.fi/converis/portal/detail/Publication/23582669
Metadata
Näytä kaikki kuvailutiedotKokoelmat
Samankaltainen aineisto
Näytetään aineistoja, joilla on samankaltainen nimeke tai asiasanat.
-
Existence of optimal transport maps in very strict CD(K,∞) -spaces
Schultz, Timo (Springer Berlin Heidelberg, 2018)We introduce a more restrictive version of the strict CD(K,∞) -condition, the so-called very strict CD(K,∞) -condition, and show the existence of optimal maps in very strict CD(K,∞) -spaces despite the possible ... -
Failure of Topological Rigidity Results for the Measure Contraction Property
Ketterer, Christian; Rajala, Tapio (Springer Netherlands, 2015)We give two examples of metric measure spaces satisfying the measure contraction property MCP(K, N) but having different topological dimensions at different regions of the space. The first one satisfies MCP(0, 3) and ... -
Notions of Dirichlet problem for functions of least gradient in metric measure spaces
Korte, Riikka; Lahti, Panu; Li, Xining; Shanmugalingam, Nageswari (European Mathematical Society Publishing House, 2019)We study two notions of Dirichlet problem associated with BV energy minimizers (also called functions of least gradient) in bounded domains in metric measure spaces whose measure is doubling and supports a (1, 1)-Poincaré ... -
Non-branching geodesics and optimal maps in strong CD(K,∞) -spaces
Rajala, Tapio; Sturm, Karl-Theodor (Springer, 2014)We prove that in metric measure spaces where the entropy functional is Kconvex along every Wasserstein geodesic any optimal transport between two absolutely continuous measures with finite second moments lives on a ... -
Determining an unbounded potential from Cauchy data in admissible geometries
Ferreira, David Dos Santos; Kenig, Carlos E.; Salo, Mikko (Taylor & Francis, 2013)In [4 Dos Santos Ferreira , D. , Kenig , C.E. , Salo , M. , Uhlmann , G. ( 2009 ). Limiting Carleman weights and anisotropic inverse problems . Invent. Math. 178 : 119 – 171 . [Crossref], [Web of Science ®], [Google ...
Ellei toisin mainittu, julkisesti saatavilla olevia JYX-metatietoja (poislukien tiivistelmät) saa vapaasti uudelleenkäyttää CC0-lisenssillä.