Näytä suppeat kuvailutiedot

dc.contributor.authorMyllykoski, Mirko
dc.contributor.authorGlowinski, Roland
dc.contributor.authorKärkkäinen, Tommi
dc.contributor.authorRossi, Tuomo
dc.contributor.editorGavrilova, Marina
dc.contributor.editorSkala, Vaclav
dc.date.accessioned2015-07-29T05:39:25Z
dc.date.available2015-07-29T05:39:25Z
dc.date.issued2015
dc.identifier.citationMyllykoski, M., Glowinski, R., Kärkkäinen, T., & Rossi, T. (2015). A GPU-Accelerated Augmented Lagrangian Based L1-mean Curvature Image Denoising Algorithm Implementation. In M. Gavrilova, & V. Skala (Eds.), <i>WSCG 2015 : 23rd International Conference in Central Europe on Computer Graphics, Visualization and Computer Vision'2015 : Full Papers Proceedings</i> (pp. 119-128). Union Agency. Computer Science Research Notes. <a href="http://wscg.zcu.cz/WSCG2015/!_2015_WSCG_Full_Papers_proceedings.pdf" target="_blank">http://wscg.zcu.cz/WSCG2015/!_2015_WSCG_Full_Papers_proceedings.pdf</a>
dc.identifier.otherCONVID_24795633
dc.identifier.otherTUTKAID_66615
dc.identifier.urihttps://jyx.jyu.fi/handle/123456789/46551
dc.description.abstractThis paper presents a graphics processing unit (GPU) implementation of a recently published augmented Lagrangian based L1-mean curvature image denoising algorithm. The algorithm uses a particular alternating direction method of multipliers to reduce the related saddle-point problem to an iterative sequence of four simpler minimization problems. Two of these subproblems do not contain the derivatives of the unknown variables and can therefore be solved point-wise without inter-process communication. Inparticular, this facilitates the efficient solution of the subproblem that deals with the non-convex term in the original objective function by modern GPUs. The two remaining subproblems are solved using the conjugate gradient method and a partial solution variant of the cyclic reduction method, both of which can be implemented relatively efficiently on GPUs. The numerical results indicate up to 33-fold speedups when compared against a single-threaded CPU implementation. The pointwise treated subproblem that takes care of the non-convex term in the original objective function was solved up to 76 times faster.fi
dc.format.extent254
dc.language.isoeng
dc.publisherUnion Agency
dc.relation.ispartofWSCG 2015 : 23rd International Conference in Central Europe on Computer Graphics, Visualization and Computer Vision'2015 : Full Papers Proceedings
dc.relation.ispartofseriesComputer Science Research Notes
dc.relation.urihttp://wscg.zcu.cz/WSCG2015/!_2015_WSCG_Full_Papers_proceedings.pdf
dc.subject.otheraugmented Lagrangian method
dc.subject.otherGPU computing
dc.subject.otherimage denoising
dc.subject.othermean curvature
dc.subject.otherOpenCL
dc.titleA GPU-Accelerated Augmented Lagrangian Based L1-mean Curvature Image Denoising Algorithm Implementation
dc.typeconferenceObject
dc.identifier.urnURN:NBN:fi:jyu-201507282599
dc.contributor.laitosTietotekniikan laitosfi
dc.contributor.laitosDepartment of Mathematical Information Technologyen
dc.contributor.oppiaineTietotekniikkafi
dc.contributor.oppiaineMathematical Information Technologyen
dc.type.urihttp://purl.org/eprint/type/ConferencePaper
dc.date.updated2015-07-28T12:15:04Z
dc.relation.isbn978-80-86943-65-7
dc.type.coarconference paper
dc.description.reviewstatuspeerReviewed
dc.format.pagerange119-128
dc.relation.issn2464-4617
dc.type.versionpublishedVersion
dc.rights.copyright© the Authors, 2015.
dc.rights.accesslevelopenAccessfi
dc.relation.conferenceInternational Conference in Central Europe on Computer Graphics, Visualization and Computer Vision
dc.subject.ysokuvankäsittely
jyx.subject.urihttp://www.yso.fi/onto/yso/p6449


Aineistoon kuuluvat tiedostot

Thumbnail

Aineisto kuuluu seuraaviin kokoelmiin

Näytä suppeat kuvailutiedot