dc.contributor.author | Myllykoski, Mirko | |
dc.contributor.author | Glowinski, Roland | |
dc.contributor.author | Kärkkäinen, Tommi | |
dc.contributor.author | Rossi, Tuomo | |
dc.contributor.editor | Gavrilova, Marina | |
dc.contributor.editor | Skala, Vaclav | |
dc.date.accessioned | 2015-07-29T05:39:25Z | |
dc.date.available | 2015-07-29T05:39:25Z | |
dc.date.issued | 2015 | |
dc.identifier.citation | Myllykoski, M., Glowinski, R., Kärkkäinen, T., & Rossi, T. (2015). A GPU-Accelerated Augmented Lagrangian Based L1-mean Curvature Image Denoising Algorithm Implementation. In M. Gavrilova, & V. Skala (Eds.), <i>WSCG 2015 : 23rd International Conference in Central Europe on Computer Graphics, Visualization and Computer Vision'2015 : Full Papers Proceedings</i> (pp. 119-128). Union Agency. Computer Science Research Notes. <a href="http://wscg.zcu.cz/WSCG2015/!_2015_WSCG_Full_Papers_proceedings.pdf" target="_blank">http://wscg.zcu.cz/WSCG2015/!_2015_WSCG_Full_Papers_proceedings.pdf</a> | |
dc.identifier.other | CONVID_24795633 | |
dc.identifier.other | TUTKAID_66615 | |
dc.identifier.uri | https://jyx.jyu.fi/handle/123456789/46551 | |
dc.description.abstract | This paper presents a graphics processing unit (GPU) implementation of a recently published augmented Lagrangian based L1-mean curvature image denoising algorithm. The algorithm uses a particular alternating direction method of multipliers to reduce the related saddle-point problem to an iterative sequence of four simpler minimization problems. Two of these subproblems do not contain the derivatives of the unknown variables and can therefore be solved point-wise without inter-process communication. Inparticular, this facilitates the efficient solution of the subproblem that deals with the non-convex term in the original objective function by modern GPUs. The two remaining subproblems are solved using the conjugate gradient method and a partial solution variant of the cyclic reduction method, both of which can be implemented relatively efficiently on GPUs. The numerical results indicate up to 33-fold speedups when compared against a single-threaded CPU implementation. The pointwise treated subproblem that takes care of the non-convex term in the original objective function was solved up to 76 times faster. | fi |
dc.format.extent | 254 | |
dc.language.iso | eng | |
dc.publisher | Union Agency | |
dc.relation.ispartof | WSCG 2015 : 23rd International Conference in Central Europe on Computer Graphics, Visualization and Computer Vision'2015 : Full Papers Proceedings | |
dc.relation.ispartofseries | Computer Science Research Notes | |
dc.relation.uri | http://wscg.zcu.cz/WSCG2015/!_2015_WSCG_Full_Papers_proceedings.pdf | |
dc.subject.other | augmented Lagrangian method | |
dc.subject.other | GPU computing | |
dc.subject.other | image denoising | |
dc.subject.other | mean curvature | |
dc.subject.other | OpenCL | |
dc.title | A GPU-Accelerated Augmented Lagrangian Based L1-mean Curvature Image Denoising Algorithm Implementation | |
dc.type | conferenceObject | |
dc.identifier.urn | URN:NBN:fi:jyu-201507282599 | |
dc.contributor.laitos | Tietotekniikan laitos | fi |
dc.contributor.laitos | Department of Mathematical Information Technology | en |
dc.contributor.oppiaine | Tietotekniikka | fi |
dc.contributor.oppiaine | Mathematical Information Technology | en |
dc.type.uri | http://purl.org/eprint/type/ConferencePaper | |
dc.date.updated | 2015-07-28T12:15:04Z | |
dc.relation.isbn | 978-80-86943-65-7 | |
dc.type.coar | conference paper | |
dc.description.reviewstatus | peerReviewed | |
dc.format.pagerange | 119-128 | |
dc.relation.issn | 2464-4617 | |
dc.type.version | publishedVersion | |
dc.rights.copyright | © the Authors, 2015. | |
dc.rights.accesslevel | openAccess | fi |
dc.relation.conference | International Conference in Central Europe on Computer Graphics, Visualization and Computer Vision | |
dc.subject.yso | kuvankäsittely | |
jyx.subject.uri | http://www.yso.fi/onto/yso/p6449 | |