A GPU-Accelerated Augmented Lagrangian Based L1-mean Curvature Image Denoising Algorithm Implementation
Myllykoski, M., Glowinski, R., Kärkkäinen, T., & Rossi, T. (2015). A GPU-Accelerated Augmented Lagrangian Based L1-mean Curvature Image Denoising Algorithm Implementation. In M. Gavrilova, & V. Skala (Eds.), WSCG 2015 : 23rd International Conference in Central Europe on Computer Graphics, Visualization and Computer Vision'2015 : Full Papers Proceedings (pp. 119-128). Union Agency. Computer Science Research Notes. http://wscg.zcu.cz/WSCG2015/!_2015_WSCG_Full_Papers_proceedings.pdf
Julkaistu sarjassa
Computer Science Research NotesPäivämäärä
2015Tekijänoikeudet
© the Authors, 2015.
This paper presents a graphics processing unit (GPU) implementation of a recently published augmented Lagrangian based L1-mean curvature image denoising algorithm. The algorithm uses a particular alternating direction method of multipliers to reduce the related saddle-point problem to an iterative sequence of four simpler minimization problems. Two of these subproblems do not contain the derivatives of the unknown variables and can therefore be solved point-wise without inter-process communication. Inparticular, this facilitates the efficient solution of the subproblem that deals with the non-convex term in the original objective function by modern GPUs. The two remaining subproblems are solved using the conjugate gradient method and a partial solution variant of the cyclic reduction method, both of which can be implemented relatively efficiently on GPUs. The numerical results indicate up to 33-fold speedups when compared against a single-threaded CPU implementation. The pointwise treated subproblem that takes care of the non-convex term in the original objective function was solved up to 76 times faster.
...
Julkaisija
Union AgencyEmojulkaisun ISBN
978-80-86943-65-7Konferenssi
International Conference in Central Europe on Computer Graphics, Visualization and Computer VisionKuuluu julkaisuun
WSCG 2015 : 23rd International Conference in Central Europe on Computer Graphics, Visualization and Computer Vision'2015 : Full Papers ProceedingsISSN Hae Julkaisufoorumista
2464-4617Asiasanat
Alkuperäislähde
http://wscg.zcu.cz/WSCG2015/!_2015_WSCG_Full_Papers_proceedings.pdfJulkaisu tutkimustietojärjestelmässä
https://converis.jyu.fi/converis/portal/detail/Publication/24795633
Metadata
Näytä kaikki kuvailutiedotKokoelmat
Samankaltainen aineisto
Näytetään aineistoja, joilla on samankaltainen nimeke tai asiasanat.
-
On GPU-accelerated fast direct solvers and their applications in image denoising
Myllykoski, Mirko (University of Jyväskylä, 2015) -
A New Augmented Lagrangian Approach for L1-mean Curvature Image Denoising
Myllykoski, Mirko; Glowinski, Roland; Kärkkäinen, Tommi; Rossi, Tuomo (Society for Industrial and Applied Mathematics, 2015)Variational methods are commonly used to solve noise removal problems. In this paper, we present an augmented Lagrangian-based approach that uses a discrete form of the L1-norm of the mean curvature of the graph of the ... -
Algorithmic issues in computational intelligence optimization : from design to implementation, from implementation to design
Caraffini, Fabio (University of Jyväskylä, 2016)The vertiginous technological growth of the last decades has generated a variety of powerful and complex systems. By embedding within modern hardware devices sophisticated software, they allow the solution of complicated ... -
Distributed multi-objective optimization methods for shape design using evolutionary algorithms and game strategies
Leskinen, Jyri (University of Jyväskylä, 2012) -
Implementation techniques for the lattice Boltzmann method
Mattila, Keijo (University of Jyväskylä, 2010)
Ellei toisin mainittu, julkisesti saatavilla olevia JYX-metatietoja (poislukien tiivistelmät) saa vapaasti uudelleenkäyttää CC0-lisenssillä.