A GPU-Accelerated Augmented Lagrangian Based L1-mean Curvature Image Denoising Algorithm Implementation
Myllykoski, M., Glowinski, R., Kärkkäinen, T., & Rossi, T. (2015). A GPU-Accelerated Augmented Lagrangian Based L1-mean Curvature Image Denoising Algorithm Implementation. In M. Gavrilova, & V. Skala (Eds.), WSCG 2015 : 23rd International Conference in Central Europe on Computer Graphics, Visualization and Computer Vision'2015 : Full Papers Proceedings (pp. 119-128). Union Agency. Computer Science Research Notes. http://wscg.zcu.cz/WSCG2015/!_2015_WSCG_Full_Papers_proceedings.pdf
Julkaistu sarjassa
Computer Science Research NotesPäivämäärä
2015Tekijänoikeudet
© the Authors, 2015.
This paper presents a graphics processing unit (GPU) implementation of a recently published augmented Lagrangian based L1-mean curvature image denoising algorithm. The algorithm uses a particular alternating direction method of multipliers to reduce the related saddle-point problem to an iterative sequence of four simpler minimization problems. Two of these subproblems do not contain the derivatives of the unknown variables and can therefore be solved point-wise without inter-process communication. Inparticular, this facilitates the efficient solution of the subproblem that deals with the non-convex term in the original objective function by modern GPUs. The two remaining subproblems are solved using the conjugate gradient method and a partial solution variant of the cyclic reduction method, both of which can be implemented relatively efficiently on GPUs. The numerical results indicate up to 33-fold speedups when compared against a single-threaded CPU implementation. The pointwise treated subproblem that takes care of the non-convex term in the original objective function was solved up to 76 times faster.
...
Julkaisija
Union AgencyEmojulkaisun ISBN
978-80-86943-65-7Konferenssi
International Conference in Central Europe on Computer Graphics, Visualization and Computer VisionKuuluu julkaisuun
WSCG 2015 : 23rd International Conference in Central Europe on Computer Graphics, Visualization and Computer Vision'2015 : Full Papers ProceedingsISSN Hae Julkaisufoorumista
2464-4617Asiasanat
Alkuperäislähde
http://wscg.zcu.cz/WSCG2015/!_2015_WSCG_Full_Papers_proceedings.pdfJulkaisu tutkimustietojärjestelmässä
https://converis.jyu.fi/converis/portal/detail/Publication/24795633
Metadata
Näytä kaikki kuvailutiedotKokoelmat
Samankaltainen aineisto
Näytetään aineistoja, joilla on samankaltainen nimeke tai asiasanat.
-
On GPU-accelerated fast direct solvers and their applications in image denoising
Myllykoski, Mirko (University of Jyväskylä, 2015) -
A New Augmented Lagrangian Approach for L1-mean Curvature Image Denoising
Myllykoski, Mirko; Glowinski, Roland; Kärkkäinen, Tommi; Rossi, Tuomo (Society for Industrial and Applied Mathematics, 2015)Variational methods are commonly used to solve noise removal problems. In this paper, we present an augmented Lagrangian-based approach that uses a discrete form of the L1-norm of the mean curvature of the graph of the ... -
Fast Estimation of Diffusion Tensors under Rician noise by the EM algorithm
Liu, Jia; Gasbarra, Dario; Railavo, Juha (Elsevier BV, 2016)Diffusion tensor imaging (DTI) is widely used to characterize, in vivo, the white matter of the central nerve system (CNS). This biological tissue contains much anatomic, structural and orientational information of fibers ... -
Algorithmic issues in computational intelligence optimization : from design to implementation, from implementation to design
Caraffini, Fabio (University of Jyväskylä, 2016)The vertiginous technological growth of the last decades has generated a variety of powerful and complex systems. By embedding within modern hardware devices sophisticated software, they allow the solution of complicated ... -
Implementation techniques for the lattice Boltzmann method
Mattila, Keijo (University of Jyväskylä, 2010)
Ellei toisin mainittu, julkisesti saatavilla olevia JYX-metatietoja (poislukien tiivistelmät) saa vapaasti uudelleenkäyttää CC0-lisenssillä.