Näytä suppeat kuvailutiedot

dc.contributor.authorTabatabaei, Mohammad
dc.contributor.authorHakanen, Jussi
dc.contributor.authorHartikainen, Markus
dc.contributor.authorMiettinen, Kaisa
dc.contributor.authorSindhya, Karthik
dc.date.accessioned2015-07-28T09:22:20Z
dc.date.available2016-03-10T22:45:06Z
dc.date.issued2015
dc.identifier.citationTabatabaei, M., Hakanen, J., Hartikainen, M., Miettinen, K., & Sindhya, K. (2015). A survey on handling computationally expensive multiobjective optimization problems using surrogates: non-nature inspired methods. <i>Structural and Multidisciplinary Optimization</i>, <i>52</i>(1), 1-25. <a href="https://doi.org/10.1007/s00158-015-1226-z" target="_blank">https://doi.org/10.1007/s00158-015-1226-z</a>
dc.identifier.otherCONVID_24627435
dc.identifier.otherTUTKAID_65684
dc.identifier.urihttps://jyx.jyu.fi/handle/123456789/46547
dc.description.abstractComputationally expensive multiobjective optimization problems arise, e.g. in many engineering applications, where several conflicting objectives are to be optimized simultaneously while satisfying constraints. In many cases, the lack of explicit mathematical formulas of the objectives and constraints may necessitate conducting computationally expensive and time-consuming experiments and/or simulations. As another challenge, these problems may have either convex or nonconvex or even disconnected Pareto frontier consisting of Pareto optimal solutions. Because of the existence of many such solutions, typically, a decision maker is required to select the most preferred one. In order to deal with the high computational cost, surrogate-based methods are commonly used in the literature. This paper surveys surrogate-based methods proposed in the literature, where the methods are independent of the underlying optimization algorithm and mitigate the computational burden to capture different types of Pareto frontiers. The methods considered are classified, discussed and then compared. These methods are divided into two frameworks: the sequential and the adaptive frameworks. Based on the comparison, we recommend the adaptive framework to tackle the aforementioned challenges.fi
dc.language.isoeng
dc.publisherSpringer Berlin Heidelberg; International Society for Structural and Multidisciplinary Optimization
dc.relation.ispartofseriesStructural and Multidisciplinary Optimization
dc.subject.otherBlack-box function
dc.subject.otherComputational cost
dc.subject.otherMetamodeling technique
dc.subject.otherMulticriteria Decision Making (MCDM)
dc.subject.otherPareto frontier
dc.subject.otherSampling technique
dc.titleA survey on handling computationally expensive multiobjective optimization problems using surrogates: non-nature inspired methods
dc.typearticle
dc.identifier.urnURN:NBN:fi:jyu-201507272593
dc.contributor.laitosTietotekniikan laitosfi
dc.contributor.laitosDepartment of Mathematical Information Technologyen
dc.contributor.oppiaineTietotekniikkafi
dc.contributor.oppiaineMathematical Information Technologyen
dc.type.urihttp://purl.org/eprint/type/JournalArticle
dc.date.updated2015-07-27T12:15:02Z
dc.type.coarhttp://purl.org/coar/resource_type/c_dcae04bc
dc.description.reviewstatuspeerReviewed
dc.format.pagerange1-25
dc.relation.issn1615-147X
dc.relation.numberinseries1
dc.relation.volume52
dc.type.versionacceptedVersion
dc.rights.copyright© Springer-Verlag Berlin Heidelberg 2015. This is a final draft version of an article whose final and definitive form has been published by Springer. Published in this repository with the kind permission of the publisher.
dc.rights.accesslevelopenAccessfi
dc.relation.doi10.1007/s00158-015-1226-z
dc.type.okmA2


Aineistoon kuuluvat tiedostot

Thumbnail

Aineisto kuuluu seuraaviin kokoelmiin

Näytä suppeat kuvailutiedot