Näytä suppeat kuvailutiedot

dc.contributor.authorReinikainen, Jaakko
dc.contributor.authorLaatikainen, Tiina
dc.contributor.authorKarvanen, Juha
dc.contributor.authorTolonen, Hanna
dc.date.accessioned2015-02-26T08:05:26Z
dc.date.available2016-01-01T22:45:05Z
dc.date.issued2015
dc.identifier.citationReinikainen, J., Laatikainen, T., Karvanen, J., & Tolonen, H. (2015). Lifetime cumulative risk factors predict cardiovascular disease mortality in a 50-year follow-up study in Finland. <i>International Journal of Epidemiology</i>, <i>44</i>(1), 108-116. <a href="https://doi.org/10.1093/ije/dyu235" target="_blank">https://doi.org/10.1093/ije/dyu235</a>
dc.identifier.otherCONVID_24582133
dc.identifier.urihttps://jyx.jyu.fi/handle/123456789/45406
dc.description.abstractSummary. Background. Systolic blood pressure, total cholesterol and smoking are known predictors of cardiovascular disease (CVD) mortality. Less is known about the effect of lifetime accumulation and changes of risk factors over time as predictors of CVD mortality, especially in very long follow-up studies. Methods. Data from the Finnish cohorts of the Seven Countries Study were used. The baseline examination was in 1959 and seven re-examinations were carried out approximately in five-year intervals. Cohorts were followed up for mortality until the end of 2011. Time-dependent Cox models with regular time-updated risk factors, time-dependent averages of risk factors and latest changes in risk factors, using smoothing splines to discover nonlinear effects were used to analyse the predictive effect of risk factors for CVD mortality. Results. A model using cumulative risk factors, modelled as the individual-level verages of several risk factor measurements over time, predicted CVD mortality better than a model using the most recent measurement information. This difference seemed to be most prominent for systolic blood pressure. U-shaped effects of the original predictors can be explained by partitioning a risk factor effect between the recent level and the change trajectory. The change in body mass index predicted the risk although body mass index itself did not. Conclusions. The lifetime accumulation of risk factors and the observed changes in risk factor levels over time are strong predictors of CVD mortality. It is important to investigate different ways of using the longitudinal risk factor measurements to take full advantage of them.en
dc.language.isoeng
dc.publisherOxford University Press; International Epidemiological Association
dc.relation.ispartofseriesInternational Journal of Epidemiology
dc.relation.urihttp://ije.oxfordjournals.org/content/44/1/108
dc.subject.otherlongitudinal study
dc.subject.othermortality
dc.titleLifetime cumulative risk factors predict cardiovascular disease mortality in a 50-year follow-up study in Finland
dc.typeresearch article
dc.identifier.urnURN:NBN:fi:jyu-201502251374
dc.contributor.laitosMatematiikan ja tilastotieteen laitosfi
dc.contributor.laitosDepartment of Mathematics and Statisticsen
dc.contributor.oppiaineTilastotiedefi
dc.contributor.oppiaineStatisticsen
dc.type.urihttp://purl.org/eprint/type/JournalArticle
dc.date.updated2015-02-25T16:30:09Z
dc.type.coarhttp://purl.org/coar/resource_type/c_2df8fbb1
dc.description.reviewstatuspeerReviewed
dc.format.pagerange108-116
dc.relation.issn0300-5771
dc.relation.numberinseries1
dc.relation.volume44
dc.type.versionacceptedVersion
dc.rights.copyright© Oxford University Press and International Epidemiological Association 2015. This is a final draft version of an article whose final and definitive form has been published by Oxford University Press and International Epidemiological Association. Published in this repository with the kind permission of the publisher.
dc.rights.accesslevelopenAccessfi
dc.type.publicationarticle
dc.subject.ysosydän- ja verisuonitaudit
dc.subject.ysoriskitekijät
jyx.subject.urihttp://www.yso.fi/onto/yso/p9886
jyx.subject.urihttp://www.yso.fi/onto/yso/p13277
dc.relation.doi10.1093/ije/dyu235
dc.type.okmA1


Aineistoon kuuluvat tiedostot

Thumbnail

Aineisto kuuluu seuraaviin kokoelmiin

Näytä suppeat kuvailutiedot