Näytä suppeat kuvailutiedot

dc.contributor.advisorVeijalainen, Jari
dc.contributor.authorAkhavan Rahnama, Amir
dc.date.accessioned2015-02-18T08:55:59Z
dc.date.available2015-02-18T08:55:59Z
dc.date.issued2015
dc.identifier.otheroai:jykdok.linneanet.fi:1466490
dc.identifier.urihttps://jyx.jyu.fi/handle/123456789/45352
dc.description.abstractSentiment analysis on Twitter public stream has been a topic of research recently. Several non-commercial libraries and software were developed to perform sentiment analysis, however none of them performed the analytics in real-time for Twitter data. Performing the same task in real-time can gives us insight of Twitter users public opinions regarding recent happenings of the time that analysis was made. In this thesis work, we propose a full-stack architecture with a software prototype that performs real- time sentiment analysis on Twitter public stream. We address the problem using large- scale online learning and specifically online parallel decision trees. Large-scale learning is utilized due to the fact that social media website such as Twitter produce data with high volume (around 5800 tweets per second in 2014) and in addition, there is a high time constraint (up to seconds) in real-time analytics in both learning, processing and query response time. Moreover, Twitter stream data arrives instance-by-instance and therefore we have utilized online learning with incremental and per-instance learning flexibility. SAMOA is a framework that provides support for a set of scalable online learning algorithms such as Vertical Hoeffding Tree. We use SAMOA’s VHT learner with Apache Storm as our Stream Processing Engine. However, utilizing only VHT and Apache Storm cannot solve the problem at hand. Therefore, we also developed an open- source Java library called Sentinel that enables real-time Twitter stream reading, in- memory pre-processing computations and data structures, feature selection, frequent miner algorithms and etc. that completes our architecture. In Chapter 3, we show the architecture of our solution and its applicability and usefulness is shown in chapter 4.en
dc.format.extent1 verkkoaineisto (62 sivua)
dc.format.mimetypeapplication/pdf
dc.language.isoeng
dc.rightsIn Copyrighten
dc.subject.othersentiment analysis
dc.subject.otherreal-time analytics
dc.subject.othersocial media mining
dc.subject.othertwitter
dc.subject.otherlarge- scale learning
dc.subject.otherparallel decision tree
dc.titleReal-time sentiment analysis of Twitter public stream
dc.typemaster thesis
dc.identifier.urnURN:NBN:fi:jyu-201502181337
dc.type.ontasotPro gradu -tutkielmafi
dc.type.ontasotMaster’s thesisen
dc.contributor.tiedekuntaInformaatioteknologian tiedekuntafi
dc.contributor.tiedekuntaFaculty of Information Technologyen
dc.contributor.laitosTietotekniikan laitosfi
dc.contributor.laitosDepartment of Mathematical Information Technologyen
dc.contributor.yliopistoUniversity of Jyväskyläen
dc.contributor.yliopistoJyväskylän yliopistofi
dc.contributor.oppiaineTietotekniikkafi
dc.contributor.oppiaineMathematical Information Technologyen
dc.date.updated2015-02-18T08:56:00Z
dc.type.coarhttp://purl.org/coar/resource_type/c_bdcc
dc.type.publicationmasterThesis
dc.contributor.oppiainekoodi602
dc.subject.ysoTwitter
dc.subject.ysososiaalinen media
dc.subject.ysotiedonlouhinta
dc.format.contentfulltext
dc.rights.urlhttps://rightsstatements.org/page/InC/1.0/
dc.type.okmG2


Aineistoon kuuluvat tiedostot

Thumbnail

Aineisto kuuluu seuraaviin kokoelmiin

Näytä suppeat kuvailutiedot

In Copyright
Ellei muuten mainita, aineiston lisenssi on In Copyright